Browse > Article
http://dx.doi.org/10.7464/ksct.2016.22.1.035

Computational Chemistry Study of CO2 Fixation and Cyclic Carbonate Synthesis Using Various Catalysts  

An, Hye Young (Department of Chemical Engineering, Pukyong National University)
Kim, Min-Kyung (Department of Chemical Engineering, Pukyong National University)
Jeong, Hui Cheol (Department of Chemical Engineering, Pukyong National University)
Eom, Ki Heon (Department of Chemical Engineering, Pukyong National University)
Won, Yong Sun (Department of Chemical Engineering, Pukyong National University)
Publication Information
Clean Technology / v.22, no.1, 2016 , pp. 35-44 More about this Journal
Abstract
In this study, a computational chemistry methodology called as molecular modeling was been applied to explain several experiment results mechanistically. The reaction chosen for this study was to remove carbon dioxide, known as a primary greenhouse gas, by an epoxide via the carbon dioxide fixation to produce carbonates. This reaction inherently needs the use of catalysts because it has a significantly high activation barrier (55~59 kcal/mol). Among various types of catalysts, we studied in zeolitic imidazolate framework 90 (ZIF-90)/ionic liquid immobilized ZIF-90 (IL-ZIF-90), polystyrene-supported quaternized ammonium salt, KI/KI-glycine, and dimethylethanolamine (DMEA). First, probable reaction pathways were proposed based on calculated energetics by computational chemistry. The energetics was then used for the thermodynamic interpretation on the activity of catalysts. In the case of ZIF-90/IL-ZIF-90 and KI/KI-glycine, IL-ZIF-90 and KI-glycine showed better yields compared to their counterparts. The calculation proposed interesting results that it is not from the lowering of activation energy but from the unstable intermediates of ZIF-90 and KI-glycine. For DMEA, the calculated activation energy was ~42 kcal/mol, much lower than that of the non-catalytic reaction. A possible reaction pathway was located to confirm the interaction between −NH group from ammonium and oxygen from epoxide for polystyrene-supported quaternized ammonium salt.
Keywords
Computational chemistry; CO2 fixation; Cyclic carbonate synthesis; Catalytic reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peng, J. J., and Deng, Y. Q., “Cycloaddition of Carbon Dioxide to Propylene Oxide Catalyzed by Ionic Liquids,” New J. Chem., 25, 639-641 (2001).   DOI
2 He, L. N., Yasuda, H., and Sakakura, T., “New Procedure for Recycling Homogeneous Catalyst: Propylene Carbonate Synthesis Under Supercritical CO2 Conditions,” Green Chem., 5, 92-94 (2003).   DOI
3 Shen, Y. M., Duan, W. L., and Shi, M., “Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-Type Complexes,” J. Org. Chem., 68, 1559-1562 (2003).   DOI
4 Lu, X. B., Zhang, Y. J., Liang, B., Li, X., and Wang, H., “Chemical Fixation of Carbon Dioxide to Cyclic Carbonates Under Extremely Mild Conditions with Highly Active Bifunctional Catalysts,” J. Mol. Catal. A : Chem., 210, 31-34 (2004).   DOI
5 Lu, X. B., Zhang, Y. J., Jin, K., Luo, L. M., and Wang, H., “Highly Active Electrophile-nucleophile Catalyst System for the Cycloaddition of CO2 to Epoxides at Ambient Temperature,” J. Catal., 227, 537-541 (2004).   DOI
6 Paddock, R. L., Hiyama Y., Mckay, J. M., and Nguyen, S. T., “Co(III) Porphyrin/ DMAP: An Efficient Catalyst System for the Synthesis of Cyclic Carbonates from CO2 and Epoxides,” Tetrahedron Lett., 45, 2023-2026 (2004).   DOI
7 Alvaro, M., Baleizao, C., Das, D., Carbonell, E., and Garcia, H., “CO2 Fixation Using Reconerable Chromium Salts Catalysts: Use of Ionic Liquids as Cosolvent or High-surfacearea Silicates as Supports,” J. Catal., 228, 254-258 (2004).   DOI
8 Mui, C., and Musgrave, C. B., “Initial Nitridation of the Ge (100) 2×1 Surface by Ammonia,” Langmuir, 21, 5230-5232 (2005).   DOI
9 Tharun, J., Bhin, K-M., Roshan, R., Kim, D. W., Kathalikkattil, A. C., Babu, R., Ahn, H. Y., Won, Y. S., and Park, D. W., “Ionic Liquid Tethered Post Functionalized ZIF-90 Framework for the Cycloaddition of Propylene Oxide and CO2,” Green Chem., DOI: 10.1039/c5gc02153g (2016).   DOI
10 Kim, N. S., Yoon, S. H., and Park, G. S., “Introduction to Computational Chemistry,” KIC News, 15, 3 (2012).
11 Anastas, P. T., and Lankey, R. L., “Life Cycle Assessment and Green Chemistry: The Yin and Yang of Industrial Ecology,” Green Chem., 2(6), 289-295 (2000).   DOI
12 Anastas, P. T., and Kirchhoff, M. M., “Origins, Current Status, and Future Challenges of Green Chemistry,” Acc. Chem. Res., 35(9), 686-694 (2002).   DOI
13 North, M., Pasquale, R., and Young, C., “Synthesis of Cyclic Carbonates from Epoxides and CO2,” Green Chem., 12, 1514-1539 (2010).   DOI
14 Sakakura, T., and Kohno, K., “The Synthesis of Organic Carbonates from Carbon Dioxide,” Chem. Commun., 11, 1312-1330 (2009).
15 Shimada, S., Yamazaki, O., Tanaka, T., Rao, M. L. N., Suzuki, Y., and Tanaka, M., “5,6,7,12-tetrahydrodibenz[c,f] [1,5]azabismocines: Highly Reactive and Recoverable Organobisnuth Reagents for Cross-coupling Reactions with Aryl Bromides,” Angew. Chem. Int. Ed., 42, 1845-1848 (2003).   DOI
16 Inoue, S., and Yamazaki, N., “Organic and Bioorganic Chemistry of Carbon Dioxide,” Kodansha Ltd., Tokyo (1981).
17 Yin, S. F., Maruyama, J., Yamashita, T., and Shimada, S., “Efficient Fixation of Carbon Dioxide by Hypervalent Organobismuth Oxide, Hydroxide, and Alkoxide,” Angew. Chem. Int. Ed., 47, 6590-6593 (2008).   DOI
18 Comerford, J. W., Ingram, I. D. V., North, M., and Wu, X., “Sustainable Metal-based Catalysts for the Synthesis of Cyclic Carbonates Containing Five-membered Rings,” Green Chem., 17, 1966-1987 (2015).   DOI
19 Matano, Y., Nomura, H., and Suzuki, H., “Synthesis and Structural Comparison of Triaryl (sulfonylimino) Nictoranes,” Inorg. Chem., 41, 1940-1948 (2002).   DOI
20 Breunig, H. J., Ghesner, I., Ghesner, M. E., and Lork, E., “Syntheses, Structures, and Dynamic Behavior of Chiral Racemic Organoantimony and -Bismuth Compounds RR'SbCl, RR'BiCl, and RR'SbM [R = 2-(Me2NCH2)C6H4,R' = CH(Me3Si)2, M=H,Li,Na],” Inorg. Chem., 42, 1751-1757 (2003).   DOI
21 Sun, J., Fugita, S. I., and Arai, M., “Development in the Green Synthesis of Cyclic Carbonate from Carbon Dioxide Using Ionic Liquids,” J. Orgaomet. Chem., 690, 3490-3497 (2005).   DOI
22 Calo, V., Nacci, A., Monopoli, A., and Fanizzi, A., “Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts,” Org. Lett., 4, 2561-2563 (2002).
23 Kawanami, H., Sasaki, A., Matsui, K., and Ikushima, Y., “A Rapid and Effective Synthesis of Propylene Carbonate Using a Supercritical CO2-ionic Liquid System,” Chem. Commun., 896-897 (2003).
24 Koseva, K., Koseva, N., and Troev, K., “Calcium Chloride as Co-catalyst of Onium Halides in the Cycloaddition of Carbon Dioxide to Oxiranes,” J. Mol. Catal. A: Chem., 194, 29-37 (2003).   DOI
25 Xiao, L. F., Li, F. W., Peng, J. J., and Xia, C. G., “Immobilized Ionic Liquid/zinc Chloride: Heterogeneous Catalyst for Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides,” J. Mol. Catal. A : Chem., 253, 265-269 (2006).   DOI
26 Bhanage, B. M., Fujita, S. I., Ikushima, Y., and Arai, M., “Synthesis of Dimeyhyl Carbonate and Glycols from Carbon Dioxide, Epoxides, and Methanol Using Heterogeneous Basic Metal Oxide Catalysts with High Activity and Selectivity,” Appl. Catal. A : Gen., 219, 259-266 (2001).
27 Yasuda, H., He, L. N., Takahashi, T., and Sakakura, T., “Nonhalogen Catalysts for Propylene Carbonate Synthesis from CO2 Under Supercritical Conditions,” Appl. Catal. A : Gen., 298, 177-180 (2006).   DOI
28 Yasuda, H., He, L. N., and Sakakura, T., “Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride,” J. Catal., 209, 547-550 (2002).   DOI
29 Wang, J. Q., Yue, W. D., Cai, F., and He, L. N., “Solventless Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides Catalyzed by Silica-supported Ionic Liquids Under Supercritical Conditions,” Catal. Commun., 8, 167-172 (2007).   DOI
30 Tharun, J., Mathai, G., Kathalikkattil, A. C., Roshan, R., Won, Y. S., Cho, S. J., Chang, J. S., and Park, D. W., “Exploring the Catalytic Potential of ZIF-90: Solventless and Co-catalystfree Synthesis of Propylene Carbonate from Propylene Oxide and CO2,” ChemPlusChem, 80, 715-721 (2015).   DOI
31 Parr, R. G., and Yang, W., “Density Functional Theory of Electronic Structure,” Annu. Rev. Phys. Chem, 46, 701-728 (1995).   DOI
32 Becke, A. D., “Density-functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys., 98, 5648-5652 (1993).   DOI
33 Lee, S. D., Kim, B. M., Kim, D. W., Kim, M. I., Roshan, K. R., Kim, M. K., Won, Y. S., and Park, D. W., “Synthesis of Cyclic Carbonate from Carbon Dioxide and Epoxides with Polystyrene-supported Quaternized Ammonium Salt Catalysts,” Appl. Catal. A : Gen., 486, 69-76 (2014).   DOI
34 Roshan, K. R., Kathalikkattil, A. C., Tharun, J., Kim, D. W., Won, Y. S., and Park, D. W., “Amino Acid/KI as Multifunctional Synergistic Catalysts for Cyclic Carbonate Synthesis from CO2 Under Mild Reaction Conditions: A DFT Corroborated Study,” Dalton Trans., 43, 2023-2031 (2014).   DOI
35 Roshan, K. R., Kim, B. M., Kathalikkattil, A. C., Tharun, J., Won, Y. S., and Park, D. W., “The Unprecedented Catalytic Activity of Alkanolamine CO2 Scrubbers in the Cycloaddition of CO2 and Oxiranes: a DFT Endorsed Study,” Chem. Commun., 50, 13664-13667 (2014).   DOI
36 Orio, M., Pantazis, D. A., and Neese, F., “Density Functional Theory,” Photosynth Res., 102, 443-453 (2009).   DOI
37 Jurcis, B. S., “Ab Initio and Density Function Theory Computational Studies of the CH4 + H → CH3 + H2 Reaction,” J. Mol. Struct., 430, 17-22 (1998).   DOI
38 Bauschlieher, C. W., “A Comparison of the Accuracy of Different Functionals,” Chem. Phys. Lett., 246, 40-44 (1995).   DOI
39 Becke, A. D., “Density-functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys., 98, 5648-5652 (1993).   DOI
40 Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuii, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J., Gaussian 09W, Revision C.01, Gaussian, Inc., Wallingford CT, (2009).
41 Curtiss, L. A., Raghavachari, K., Redfern, P. C., and Pople J. A., “Investigation of the use of B3LYP Zero-point Energies and Geometries in the Calculation of Enthalpies of Formation,” Chem. Phys. Lett., 270, 419-426 (1997).   DOI
42 Andersson, M. P., and Uvdal, P., “New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p),” J. Phys. Chem., 109, 2937-2941 (2005).   DOI
43 Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., and Yaghi, O. M., “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks,” Acc. Chem. Res., 42, 58-67 (2009).
44 Morris, W., Doonan, C. J., Furukawa, H., Banerjee, R., and Yaghi, O. M., “Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks,” J. Am. Chem. Soc., 130(38), 12626-12627 (2008).   DOI
45 Check, C. E., Faust, T. O., Bailey, J. M., Wright, B. J., Gilbert, T. M., and Sunderlin, L. S., “Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for p-block Elements,” J. Phys. Chem., 105(34), 8111-8116(2001).   DOI
46 Kwon, D. Y., Kim, J. I., Kang, H. J., Kim, D. Y., Kim, J. H., Lee, B., and Kim, M. S., “Recent Development to Generate Carbon Dioxide-based Cyclic Carbonate and Polycarbonate,” Clean Technol., 17(3), 201-208 (2011).   DOI
47 Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., and Yaghi, O. M., “High-throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture,” Science, 319, 939-942 (2008).   DOI
48 Widjaja, Y., Mysinger, M. M., and Musgrave, C. B., “Ab Initio Study of Adsorption and Decomposition of NH3 on Si(100)(2×1),” J. Phys. Chem, 104, 2527-2533 (2000).
49 Widjaja, Y., and Musgrave, C. B., “A Density Functional Theory Study of the Nonlocal Effects of NH3 Adsorption and Dissociation on Si(100) (2×1),” Surf. Sci., 469, 9-20(2000).   DOI
50 Wang, G. T., Mui, C., Musgrave, C. B., and Bent, S. F., “Example of a Thermodynamically Controlled Reaction on a Semiconductor Surface: Acetone on Ge(100)2 × 1,” J. Phys. Chem, 105, 12559-12565 (2001).   DOI