• Title/Summary/Keyword: molecular flexibility

Search Result 97, Processing Time 0.035 seconds

Waterborne Core-shell Pressure Sensitive Adhesive (PSA) Based on Polymeric Nano-dispersant (고분자 분산제를 이용한 Core-shell 수성 감압점착제)

  • Lee, Jin-Kyoung;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.3
    • /
    • pp.89-95
    • /
    • 2016
  • An environmentally friendly water-based pressure sensitive adhesive (PSA) was designed in an attempt to replace the solvent-based adhesive for dry lamination used in flexible food packaging films. Instead of using a low molecular weight surfactant, which may have variable material properties, a high molecular weight dispersant was used for emulsification. A polymeric nano-dispersant (PND) was synthesized using solution polymerization, and it was used as a micelle seed in the surfactant, resulting in the synthesis of a core/shell grafted acrylic adhesive. The shell and core exhibited different $T_g$ values, so that the initial adhesion strength and holding power were complemented by the film's flexibility, which is required to provide good adhesion of thin films. Results showed that the PSA designed in this study using the PND instead of traditional low molecular weight surfactant had adhesive properties applicable to the flexible packaging with appropriate tack.

Molecular Docking and Kinetic Studies of the A226N Mutant of Deinococcus geothermalis Amylosucrase with Enhanced Transglucosylation Activity

  • Hong, Seungpyo;Siziya, Inonge Noni;Seo, Myung-Ji;Park, Cheon-Seok;Seo, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1436-1442
    • /
    • 2020
  • Amylosucrase (ASase, E.C. 2.4.1.4) is capable of efficient glucose transfer from sucrose, acting as the sole donor molecule, to various functional acceptor compounds, such as polyphenols and flavonoids. An ASase variant from Deinococcus geothermalis, in which the 226th alanine is replaced with asparagine (DgAS-A226N), shows increased polymerization activity due to changes in the flexibility of the loop near the active site. In this study, we further investigated how the mutation modulates the enzymatic activity of DgAS using molecular dynamics and docking simulations to evaluate interactions between the enzyme and phenolic compounds. The computational analysis revealed that the A226N mutation could induce and stabilize structural changes near the substrate-binding site to increase glucose transfer efficiency to phenolic compounds. Kinetic parameters of DgAS-A226N and WT DgAS were determined with sucrose and 4-methylumbelliferone (MU) as donor and acceptor molecules, respectively. The kcat/Km value of DgAS-A226N with MU (6.352 mM-1min-1) was significantly higher than that of DgAS (5.296 mM-1min-1). The enzymatic activity was tested with a small phenolic compound, hydroquinone, and there was a 1.4-fold increase in α-arbutin production. From the results of the study, it was concluded that DgAS-A226N has improved acceptor specificity toward small phenolic compounds by way of stabilizing the active conformation of these compounds.

Enhanced Synthesis of Active rPA in the Continuous Exchange Cell-free Protein Synthesis [CECF] System utilizing Molecular Chaperones (분자 샤페론을 사용한 연속확산식 무세포단백질 발현 시스템에서의 재조합 Plasminogen Activator의 효율적 발현)

  • Park, Chang-Gil;Kim, Tae-Wan;Choi, Cha-Yong;Kim, Dong-Myung
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.118-122
    • /
    • 2006
  • In this report, we describe that the use of GroEL/GroES-enriched S30 extract remarkably enhances the solubility and enzymatic activity of cell-free synthesized rPA, which requires the correct formation of 9 disulfide bonds for its biological activity. We found that the stable maintenance of redox potential is necessary, but not sufficient for the optimal expression of active rPA. In a control reaction without using additional molecular chaperones, most of the rPA molecules were aggregated almost instantly after their expression and thus failed to exhibit the enzymatic activity. However, by the use of GroEL/GroES-enriched extract, combined with IAM-treatment, approximately $30{\mu}g/ml$ of active rPA was expressed in the cell-free synthesis reaction. This result not only demonstrates the efficient production of complex proteins, but also shows the control and flexibility offered by the cell-free protein synthesis system.

Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in Candida glabrata

  • Santos, Francisco J. Perez-de los;Garcia-Ortega, Luis Fernando;Robledo-Marquez, Karina;Guzman-Moreno, Jesus;Riego-Ruiz, Lina
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • After Candida albicans, Candida glabrata is one of the most common fungal species associated with candidemia in nosocomial infections. Rapid acquisition of nutrients from the host is important for the survival of pathogens which possess the metabolic flexibility to assimilate different carbon and nitrogen compounds. In Saccharomyces cerevisiae, nitrogen assimilation is controlled through a mechanism known as Nitrogen Catabolite Repression (NCR). NCR is coordinated by the action of four GATA factors; two positive regulators, Gat1 and Gln3, and two negative regulators, Gzf3 and Dal80. A mechanism in C. glabrata similar to NCR in S. cerevisiae has not been broadly studied. We previously showed that in C. glabrata, Gln3, and not Gat1, has a major role in nitrogen assimilation as opposed to what has been observed in S. cerevisiae in which both factors regulate NCR-sensitive genes. Here, we expand the knowledge about the role of Gln3 from C. glabrata through the transcriptional analysis of BG14 and gln3Δ strains. Approximately, 53.5% of the detected genes were differentially expressed (DEG). From these DEG, amino acid metabolism and ABC transporters were two of the most enriched KEGG categories in our analysis (Up-DEG and Down-DEG, respectively). Furthermore, a positive role of Gln3 in AAA assimilation was described, as was its role in the transcriptional regulation of ARO8. Finally, an unexpected negative role of Gln3 in the gene regulation of ABC transporters CDR1 and CDR2 and its associated transcriptional regulator PDR1 was found. This observation was confirmed by a decreased susceptibility of the gln3Δ strain to fluconazole.

Conformal Zinc Oxide Thin Film Deposition on Graphene using molecular linker by Atomic Layer Deposition

  • Park, Jin-Seon;Han, Gyu-Seok;Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.280.2-280.2
    • /
    • 2016
  • The graphene, a single atomic sheet of graphite, has attracted tremendous interest owing to its novel properties including high intrinsic mobility, optical transparency and flexibility. However, for more diverse application of graphene devices, it is essential to tune its transport behavior by shifting Dirac Point (DP) of graphene. So, in the following context, we suggest a method to tune structural and electronic properties of graphene using atomic layer deposition. By atomic layer deposition of zinc oxide (ZnO) on graphene using 4-mercaptophenol as linker, we can fabricate n-doped graphene. Through ${\pi}-{\pi}$ stacking between chemically inert graphene and 4-mercaptophenol, conformal deposition of ZnO on graphene was enabled. The electron mobility of graphene TFT increased more than 3 times without considerably decreasing the hole mobility, compared to the pristine graphene. Also, it has high air stability. This ZnO doping method by atomic layer deposition can be applicable to large scale array of CVD graphene TFT.

  • PDF

Technology Investigation of Polymer Insulator (Polymer Insulator의 개발 동향)

  • Kang, D.P.;Yoon, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.891-893
    • /
    • 1992
  • Polymers have good electrical properties as an insulation material. Though they show more and less poor resistance to heat, radiation, and oxygen, the poor properties have been overcame by developing new resin with the saturated molecular structure and compounding resin with resistive fillers. Polymer insulators have many advantages; light weight, good mechanical properties, better contaimination performance, low cost by mass productivity, no destruction in many pieces, good flexibility in design, short manufacturing time. Usage of polymer insulators has increased rapidly with good credit on long term properties in advanced nations and will continue to grow.

  • PDF

Synthesis and Properties of Multiblock Copolymers Consisting of Oligo(L-lactic acid) and Poly(oxyethylene-co-oxypropylene) with Different Composition

  • Lee, Chan-Woo
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.259-266
    • /
    • 2001
  • Multiblock copolymer was synthesized by the copolycondensation of oligo(L-lactic acid) prepared by thermal dehydration of L-lactic acid, Pluronic$\^$TM/(PN) and dodecanedioic acid as carboxyl/hydroxyl adjusting agent. This polycondensation proceeded by catalysis of stannous oxide to give the multiblock copolymers with high molecular weight and wide range of compositions. Polymer film was prepared by casting the chloroform solution of the multiblock copolymers having different composition. The multiblock copolymers having relatively high contents of poly(L-lactide) were melt spun into filaments which were subsequently drawn at 60$^{\circ}C$. The copolymer films and the filaments showed an improved flexibility due to the incorporation of the soft segments.

  • PDF

Kinetic Study of Organic Acid Formations and Growth of Anaerobiospirillum succiniciproducens During Continuous Cultures

  • Lee, Pyung-Cheon;Lee, Sang-Yup;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1379-1384
    • /
    • 2009
  • Succinic acid-producing Anaerohiospirillum succinkiproducens was anaerobically grown in glucose-fed continuous cultures using glucose as a carbon source, and the metabolic flexibility of A. succiniciproducens in response to varying glucose concentrations and dilution rates was examined Both succinic acid (SA) and acetic acid (AA) formation was growth-associated, and their growth-rate-related coefficients ($K_{SA/X}$, $K_{AA/X}$) and nongrowth-rate-related coefficients ($K'_{SA/X}$, $K'_{AA/X}$) were slightly influenced by glucose concentrations. A high glucose concentration (38 g/l) and high growth rate ($0.63\;h^{-1}$) did not induce by-product formation.

The effect of Several Pulp properties and freeness treated with different sized cellulase (섬유소 분해효소의 분자량에 따른 조합처리가 종이의 강도 변화 및 표면 변화에 미치는 영향)

  • 김병헌
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.1
    • /
    • pp.75-85
    • /
    • 2001
  • This study confirmed different results according to the molecular weight and pore properties of treated pulp. In this study the pre-treated enzyme material was increasing the beating speed compared with non-treated one. And it was observed that the change of freeness according to the combination ratio depended upon the pores size of pulp and that fibers became flexible owing to the physical deformation of fibers themselves through pre-treated enzyme increasing the flexibility of fibers to increase the contact area of fiber and thus resulting in the increase of specific surface area, the increase of fiber bonding strength and the increase of beating speed.

  • PDF

Comparison of the Properties of Molecular Composites Blends of Poly(vinyl alcohol)/Conducting Polymer (폴리비닐알콜/전도성고분자 분자복합체와 블렌드의 물성 비교)

  • Kwon, Ji-Yun;Kim, Young-Hee;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.29-32
    • /
    • 2001
  • Conductive polymers(CPs) are a relatively new class of organic materials displaying as their foremost property a high conductivity combined with very light weight, flexibility and reasonably facile processability[1]. Due to their high conductivity/weight ratio, they have recently evinced much interest in potential application as EMI shielding screens, coatings or jackets for flexible conductors, rechargeable batteries and as possible substitutes for metallic conductors or semiconductors in wide variety of electrical devices[2]. (omitted)

  • PDF