• 제목/요약/키워드: molecular evidence

검색결과 899건 처리시간 0.028초

GRP78 Secreted by Colon Cancer Cells Facilitates Cell Proliferation via PI3K/Akt Signaling

  • Fu, Rong;Yang, Peng;Wu, Hai-Li;Li, Zong-Wei;Li, Zhuo-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7245-7249
    • /
    • 2014
  • Glucose regulated protein 78 (GRP78) is usually recognized as a chaperone in the endoplasmic reticulum. However, increasing evidence indicates that GRP78 can be translocated to the cell surface, acting as a signaling receptor for a variety of ligands. Since little is known about the secretion of GRP78 and its role in the progression of colon cancer we here focused on GRP78 from colon cancer cells, and purified GRP78 protein mimicking the secreted GRP78 was able to utilize cell surface GRP78 as its receptor, activating downstream PI3K/Akt and Wnt/${\beta}$-catenin signaling and promote colon cancer cell proliferation. Our study revealed a new mode of action of autocrine GRP78 in cancer progression: secreted GRP78 binds to cell surface GRP78 as its receptor and activates intracellular proliferation signaling.

The Pleiotropy of Telomerase against Cell Death

  • Sung, Young Hoon;Choi, Yoon Sik;Cheong, Cheolho;Lee, Han-Woong
    • Molecules and Cells
    • /
    • 제19권3호
    • /
    • pp.303-309
    • /
    • 2005
  • The end of eukaryotic genomic DNA is capped by a specialized structure called as "telomere" which consists of the repetitive array of nucleotide sequence, TTAGGG, in humans and mice, and a variety of binding proteins. Telomerase is a ribonucleoprotein (RNP) complex responsible for the elongation of telomeres to maintain the genomic integrity, and is composed of telomerase reverse transcriptase (TERT), telomerase RNA component (TERC), and their associated factors regulating the catalytic activity of telomerase. Although it is now apparent that telomerase protects cells from apoptosis via the maintenance of genomic integrity by stabilizing telomeres, our understanding for the physiological role of telomerase is yet far from completion, and emerging evidence suggests that telomerase has additional extratelomeric roles in mediating cell survival and anti-apoptotic functions against various cytotoxic stresses. Here we summarize and discuss how telomerase and telomeres are involved in mediating cellular protection against apoptosis.

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Red ginseng (Panax ginseng Meyer) oil: A comprehensive review of extraction technologies, chemical composition, health benefits, molecular mechanisms, and safety

  • Truong, Van-Long;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.214-224
    • /
    • 2022
  • Red ginseng oil (RGO), rather than the conventional aqueous extract of red ginseng, has been receiving much attention due to accumulating evidence of its functional and pharmacological potential. In this review, we describe the key extraction technologies, chemical composition, potential health benefits, and safety of RGO. This review emphasizes the proposed molecular mechanisms by which RGO is involved in various bioactivities. RGO is mainly produced using organic solvents or supercritical fluid extraction, with the choice of method greatly affecting the yield and quality of the end products. RGO contains a high unsaturated fatty acid levels along with considerable amounts of lipophilic components such as phytosterols, tocopherols, and polyacetylenes. The beneficial health properties of RGO include cellular defense, antioxidation, anti-inflammation, anti-apoptosis, chemoprevention, hair growth promotion, and skin health improvement. We propose several molecular mechanisms and signaling pathways that underlie the bioactivity of RGO. In addition, RGO is regarded as safe and nontoxic. Further studies on RGO must focus on a deeper understanding of the underlying molecular mechanisms, composition-functionality relationship, and verification of the bioactivities of RGO in clinical models. This review may provide useful information in the development of RGO-based products in nutraceuticals, functional foods, and functional cosmetics.

Surgical Perspective of T1799A BRAF Mutation Diagnostic Value in Papillary Thyroid Carcinoma

  • Brahma, Bayu;Yulian, Erwin Danil;Ramli, Muchlis;Setianingsih, Iswari;Gautama, Walta;Brahma, Putri;Sastroasmoro, Sudigdo;Harimurti, Kuntjoro
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.31-37
    • /
    • 2013
  • Background: Throughout Indonesia, thyroid cancer is one of the ten commonest malignancies, with papillary thyroid carcinoma (PTC) in our hospital accounting for about 60% of all thyroid nodules. Although fine needle aspiration biopsy (FNAB) is the most reliable diagnostic tool, some nodules are diagnosed as indeterminate and second surgery is common for PTC. The aim of this study was to establish the diagnostic value and feasibility of testing the BRAF T1799A mutation on FNA specimens for improving PTC diagnosis. Materials and Methods: This prospective study enrolled 95 patients with thyroid nodules and future surgery planned. Results of mutational status were compared with surgical pathology diagnosis. Results: Of the 70 cases included in the final analysis, 62.8% were PTC and the prevalence of BRAF mutation was 38.6%. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for BRAF mutation analysis were 36%, 100%, 100% and 48%, respectively. With other data findings, nodules with "onset less than 5 year" and "hard consistency" were proven as diagnostic determinants for BRAF mutation with a probability of 62.5%. This mutation was also a significant risk factor for extra-capsular extension. Conclusions: Molecular analysis of the BRAF T1799A mutation in FNAB specimens has high specificity and positive predictive value for PTC. It could be used in the selective patients with clinical characteristics to facilitate PTC diagnosis and for guidance regarding extent of thyroidectomy.

Effects of Dioxin Exposed in Human by Using Radioactive cDNA Microarray

  • Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Hye-Won;Sohn, Sung-Hwa;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Lee, Seung-Min;Lee, Eun-Il;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.35-47
    • /
    • 2006
  • 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) are well known as the most toxic environmental compound in these days. Many researches are reported that dioxin produces multiple toxic effects, such as endocrine toxicity, reproductive toxicity, immunotoxicity and cancer. In this study, we carried to discover novel evidence for previously unknown gene expression patterns in human exposed to dioxin by using radioactive cDNA microarray. 548 workers who were divided into experimental and control groups according to their urinary Naphthol levels were enrolled in our study. Blood mRNA in human was isolated, and the gene expression profiles were analyzed by cDNA microarray. Gene expression analysis identified 52 genes which exhibited a significant change. In our study, most notably, genes involved in cell cycle, cell proliferation, signal transduction and apoptosis in human exposed to dioxin, such as CCND3, TSHR, and EFRN5, were up-regulated. In the current study, we observed gene expression of people that are exposed to dioxin using radioactive cDNA microarray. Through these results, we suggest when objects are exposed to toxic compounds, such as dioxin, the radioactive cDNA microarray may be using in sensitively detecting of cancerous change.

Gene Expression Profiles Related with TCDD-Induced Hepatotoxicity

  • Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Yu-Ri;Sohn, Sung-Hwa;Seo, Sang-Hui;Lee, Seung-Ho;Kim, Hye-Won;Won, Nam-Hee;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제1권3호
    • /
    • pp.164-171
    • /
    • 2005
  • Toxicological studies have an object of detecting adverse effects of a chemical on an organism based on observed toxicity marker (i.e., serum biochemical markers and chemical-specific gene expression) or phenotypic outcome. To date, most toxicogenomic studies concentrated on hepatic toxicity. cDNA microarray analysis enable discrimination of the responses in animals exposed to different classes of hepatotoxicants. In an effort to further characterize the mechanisms of 2, 3, 7, 8,-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin)-mediated toxicity, comprehensive temporal-responsive microarray analyses were performed on hepatic tissue from Sprague-Dawley rats treated with TCDD. Hepatic gene expression profiles were monitored using custom DNA chip containing 490 cDNA clones related with toxicology. Gene expression analysis identified 26 features which exhibited a significant change. In this study, we observed that the genes related with oxidative stress in rats exposed to Dioxin, such as CYPIIA3 and glutathione S-transferase, were up-regulated at 24hr after exposure. In this study, we carried out to discover novel evidence for previously unknown gene expression patterns related to mechanism of hepatic toxicity in rats exposed to dioxin, and to elucidate the effects of dioxin on the gene expression after exposure to dioxin.

제한효소 절편길이 다형성(T-RFLP) 분석기법을 이용한 손에 서식하는 세균의 군집조성 분석 (Profile Analysis of Bacteria in Human Hands Using the Terminal Restriction Fragment Length Polymorphism (T-RFLP) Analysis)

  • 박지선;김승범
    • 과학수사학회지
    • /
    • 제11권4호
    • /
    • pp.276-282
    • /
    • 2017
  • 사건현장에서 얻어질 수 있는 증거물로써 현대 분자수준의 수사기법에 힘입어 많은 미세증거물들의 가치가 확인되고 있다. 이러한 미세증거물에는 DNA처럼 개인 식별에 유용한 물질들도 포함되어 있지만, 실제 현장에서 개별적인 특성을 나타내는 증거물만을 수집하는 것은 쉽지 않기 때문에 아직 응용되지 못하거나 발굴되지 않은 증거물 후보군에 대해 연구가 지속되어야 할 필요가 있다. 본 연구에서는 16명의 사람으로부터 손에서 서식하는 세균 군집을 채취하였으며 미생물군집분석방법 중 하나인 제한효소 절편길이 다형성(T-RFLP) 기법을 개인 식별에 활용할 수 있는지의 여부를 조사하였다. 그 결과, 16개의 서로 다른 electropherogram을 얻을 수 있었고, Staphylococcus속과 Bacillus 속을 포함하여 개인마다 종류와 조성의 차이를 보이는 다양한 세균 분류군들이 손바닥에 서식하고 있음을 확인하였으며, 이를 개인을 둘러싼 환경조건과 성별 등의 요인들을 연관하여 해석하고자 하였다.

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

  • Lee, Joo-Hee;Kim, Sun-Hyung;Jung, Young-Ho;Kim, Jung-A;Lee, Mi-Ok;Choi, Pil-Gyu;Choi, Woo-Bong;Kim, Kyung-Nam;Jwa, Nam-Soo
    • The Plant Pathology Journal
    • /
    • 제21권2호
    • /
    • pp.149-157
    • /
    • 2005
  • A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

Protoplast-Mediated Transformation of the Filamentous Fungus Cladosporium phlei: Evidence of Tandem Repeats of the Integrative Transforming Vector

  • Kim, Jung-Ae;Kim, Jung-Mi;Kim, Hwan-Gyu;Kim, Beom-Tae;Hwang, Ki-Jun;Park, Seung-Moon;Yang, Moon-Sik;Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.179-183
    • /
    • 2009
  • To facilitate the genetic manipulation of Cladosporium phlei, a causal agent of leaf spot disease in timothy (Phleum pretense), protoplast-mediated transformation of C. phlei has been developed and the resulting transformants were characterized in this study. Hygromycin B resistance was applied as a dominant selection marker due to the sensitivity of C. phlei to this antibiotic. The transformation efficiency ranged from approximately 20-100 transformants per experiment. Southern blot analysis of stable transformants revealed that transformation occurred by way of stable integration of the vector DNA into the fungal chromosome. PCR analysis and plasmid rescuing of randomly selected transformants suggested that integration of tandem repeat copies of vector DNA was common. In addition, multiple integrations of the transforming vector at different chromosomal sites were also observed. The establishment of a transformation method for C. phlei facilitates strain improvement of this fungus and can be applied as an initial step in the molecular analysis of pigment production in this fungus.