• Title/Summary/Keyword: molecular electronics

Search Result 266, Processing Time 0.027 seconds

Conductance of a Single Molecule Junction Formed with Ni, Au, and Ag Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.513-516
    • /
    • 2014
  • We measure the conductance of a 4,4'-diaminobiphenyl formed with Ni electrodes using a scanning tunneling microscope-based break-junction technique. For comparison, we use Au or Ag electrodes to form a metal-molecular junction. For molecules that conduct through the highest occupied molecular orbital, junctions formed with Ni show similar conductance as Au and are more conductive than those formed with Ag, consistent with the higher work function for Ni or Au. Furthermore, we observe that the measured molecular junction length that is formed with the Ni or Au electrodes was shorter than that formed with the Ag electrodes. These observations are attributed to a larger gap distance of the Ni or Au electrodes compared to that of the Ag electrodes after the metal contact ruptures. Since our work allows us to measure the conductance of a molecule formed with various electrodes, it should be relevant to molecular electronics with versatile materials.

DNA Metallization for Nanoelectronics (DNA 기반 금속 나노 와이어의 제작기술)

  • Han, Gyeongyeop;Lee, Jungkyu K.
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.253-257
    • /
    • 2018
  • DNA metallization has been emerged as a candidate for fabricating nanocircuits because of its simple process over a large area on a surface. With unique properties, DNA can be an excellent template to achieve molecular electronics. Thus, we introduced the preparation and properties of DNA metallization, and also suggested future directions in this review.

Calculations of Thickness Uniformity in Molecular Beam Epitaxial Growth (MBE 장치에 의한 에피 성장 두께 균일도 계산)

  • 윤경식;김은규;민석기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.81-87
    • /
    • 1993
  • The growth thickness uniformity of epitaxial layers deposited using a moiecular beam epitaxy system is calculated from the arrangement of molecular beam source and the substrate and the geometric dimensions of the crucible in order to predict the optimum design conditions of the prototype MBE system. The thickness uniformity better than 5% over a 3-inch wafer can be obtained by keeping the distance between the substrate and the crucible's orifice longer than 20cm, the tapering angle of the crucible larger than 6$^{\circ}$, and the angle between the normal to the substrate at the center and the crucible axis as larger as possible. In addition, the growth yield decreases to below 51% as the distance between the substrate and the orifice becomes longer than 25cm.

  • PDF

The 607nm GaInP/AlInP Distributed Bragg Reflector Visible Laser Grown by Gas source Molecular Beam (GSMBE에 의한 단파장 GaInP/AIInP DBR 반도체 레이저 제작 및 특성)

  • ;;Katsumi Kishino;Yawara Kaneko
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.9
    • /
    • pp.24-29
    • /
    • 1993
  • The 607 nm GaInP/AlInP distributed bragg reflector (DBR) lasers using the second order gratings period of 184.7 nm were fabricated by gas source molecular beam epitaxy (GSMBE) and the conventional holographic method. GaInP/AlInP DBR lasers show single mode operations up to 1.8 times the threshold currents with a wavelength of 607 nm at 140 K and a wavelength shift of 0.033 nm/K is observed. No mode hopping was found in the temperature ranging from 120 to 165K.

  • PDF

Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices

  • Ha, S.-K.;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.245-249
    • /
    • 2015
  • Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.

Chemical Lithography by Surface-Induced Photoreaction of Nitro Compounds

  • Han, Sang-Woo;Lee, In-Hyung;Kim, Kwan
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • Searching for systems of self-assembled monolayers (SAMs) that can be used as templates for chemical lithography, we found that nitro groups on aromatic SAMs are selectively converted on Ag to amino groups by irradiation with a visible laser. 4-nitrobenzenethiol on Ag was thus converted to 4-aminobenzenethiol by irradiating it with an $Ar^+$ laser. This was evident from surface-enhanced Raman scattering (SERS) as well as from a coupling reaction forming amide bonds. The surface-induced photoreaction allowed us to prepare patterned binary monolayers on Ag that showed different chemical reactivities. Using the binary monolayers as a lithographic template, we induced site-specific chemical reactions, such as the selective growth of biominerals on either the nitro- or amine-terminated regions by adjusting the crystal-growth conditions. We also demonstrated that patterned, amine-terminated monolayers can be fabricated even on gold by using silver nanoparticles as photoreducing catalysts.

  • PDF

Molecular Distribution depending on the Cooling-off Condition in a Solution-Processed 6,13-Bis(triisopropylsilylethynyl)-Pentacene Thin-Film Transistor

  • Park, Jae-Hoon;Bae, Jin-Hyuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.402-407
    • /
    • 2014
  • Herein, we describe the effect of the cooling-off condition of a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) film on its molecular distribution and the resultant electrical properties. Since the solvent in a TIPS-pentacene droplet gradually evaporates from the rim to the center exhibiting a radial form of solute, for a quenched case, domains of the TIPS-pentacene film are aboriginally spread showing original features of radial shape due to suppressed molecular rearrangement during the momentary cooling period. For the slowly cooled case, however, TIPS-pentacene molecules are randomly rearranged during the long cooling period. As a result, in the lopsided electrodes structure proposed in this work, the charge transport generates more effectively under the case for radial distribution induced by the quenching technique. It was found that the molecular redistribution during the cooling-period plays an important role on the magnitude of the mobility in a solution-processed organic transistor. This work provides at least a scientific basis between the molecular distribution and electrical properties in solution-processed organic devices.

Interfacial Charge and Mass Transfer at Graphene-SiO2 Substrates: Raman Spectroscopic Studies

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.115.1-115.1
    • /
    • 2014
  • Atom-thick 2-dimensional materials such as graphene, h-BN and MoS2 hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. From a fundamental point of view, 2-dim crystal-solid substrates can also serve as a unique system to study various physicochemical phenomena occurring at low dimensions or interfaces. In this talk, I will present our recent Raman spectroscopy studies on the surface science problems of graphene: interfacial charge transfer, molecular diffusion in confined space and structural deformation.

  • PDF

A Study on the Electrical Properties of Phospholipid and Azobenzene Mixed Films (인지질-아조벤젠 혼합막의 전기특성에 관한 연구)

  • Cho, S.Y.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1702-1704
    • /
    • 2000
  • Molecular cis-trans switching in mono and multilayer systems containing azobenzene is of particular interest in physics. chemistry and electronics. because of the possible application of the switching. Molecular swiching in phospholipid and azobenzene mixed monolayers on a water surface was examined by Maxwell displacement current(MDC) measurements. As a result. It's phtoisomerization progressed by 8A5H in mixed films.

  • PDF