• Title/Summary/Keyword: molecular diversity

Search Result 902, Processing Time 0.022 seconds

Molecular Taxonomy of a Phantom Midge Species (Chaoborus flavicans) in Korea

  • An, Hae-In;Jung, Gil-A;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • v.28 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • The larvae of Chaoborus are widely distributed in lakes, ponds, and reservoirs. These omnivorous Chaoborus larvae are crucial predators and play a role in structuring zooplankton communities, especially for small-sized prey. Larvae of Chaoborus are commonly known to produce predator-induced polyphenism in Daphnia sp. Nevertheless, their taxonomy and molecular phylogeny are very poorly understood. As a fundamental study for understanding the role of Chaoborus in predator-prey interactions in a freshwater ecosystem, the molecular identification and phylogenetic relationship of Chaoborus were analyzed in this study. A molecular comparison based on partial mitochondrial cytochrome oxidase I (COI) between species in Chaoborus was carried out for the identification of Chaoborus larvae collected from 2 localities in Korea. According to the results, the Chaoborus species examined here was identified as C. flavicans, which is a lake-dwelling species. Furthermore, partial mitochondrial genome including COI, COII, ATP6, ATP8, COIII, and ND3 were also newly sequenced from the species and concatenated 5 gene sequences excluding ATP8 with another 9 dipteran species were compared to examine phylogenetic relationships of C. flavicans. The results suggested that Chaoborus was more related to the Ceratopogonidae than to the Culicidae. Further analysis based on complete mitochondrial DNA sequences and nuclear gene sequences will provide a more robust validation of the phylogenetic relationships of Chaoborus within dipteran lineages.

Molecular profiling of 18S rRNA reveals seasonal variation and diversity of diatoms community in the Han River, South Korea

  • Muhammad, Buhari Lawan;Lee, Yeon-Su;Ki, Jang-Seu
    • Journal of Species Research
    • /
    • v.10 no.1
    • /
    • pp.46-56
    • /
    • 2021
  • Diatoms have been used in examining water quality and environmental change in freshwater systems. Here, we analyzed molecular profiling of seasonal diatoms in the Han River, Korea, using the hypervariable region of 18S V1-V3 rRNA and pyrosequencing. Physicochemical data, such as temperature, DO, pH, and nutrients showed the typical seasonal pattern in a temperate region. In addition, cell counts and chlorophyll-a, were recorded at high levels in spring compared to other seasons, due to the diatom bloom. Metagenomic analysis showed a seasonal variation in the phytoplankton community composition, with diatoms as the most frequently detected in spring (83.8%) and winter (69.7%). Overall, diatom genera such as Stephanodiscus, Navicula, Cyclotella, and Discostella were the most frequent in the samples. However, a large number of unknown Thalassiosirales diatoms were found in spring (35.5%) and winter (36.3%). Our molecular profiling revealed a high number of diatom taxa compared to morphological observation. This is the first study of diatoms in the Han River using molecular approaches, providing a valuable reference for future study on diatoms-basis environmental molecular monitoring and ecology.

Multiple roles of phosphoinositide-specific phospholipase C isozymes

  • Suh, Pann-Ghill;Park, Jae-Il;Manzoli, Lucia;Cocco, Lucio;Peak, Joanna C.;Katan, Matilda;Fukami, Kiyoko;Kataoka, Tohru;Yun, Sang-Uk;Ryu, Sung-Ho
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.415-434
    • /
    • 2008
  • Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-$\beta$, -$\gamma$, -$\delta$, -$\varepsilon$, -$\zeta$ and -$\eta$. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.

Molecular Monitoring of Eukaryotic Plankton Diversity at Mulgeum and Eulsukdo in the Lower Reaches of the Nakdong River (낙동강 하류 물금과 을숙도 수환경의 진핵 플랑크톤 종조성에 대한 분자모니터링)

  • Lee, Jee Eun;Lee, Sang-Rae;Youn, Seok-Hyun;Chung, Sang Ok;Lee, Jin Ae;Chung, Ik Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.3
    • /
    • pp.160-180
    • /
    • 2012
  • We have studied the eukaryotic plankton species diversity to compare the community structure of fresh and brackish waters in the lower reaches of the Nakdong River using metagenomic methods. We constructed 18S rDNA clone libraries of total DNAs extracted from environmental water samples collected at Mulgeum (MG100929, fresh) and Eulsukdo bridge (ES, brackish). Through the steps of colony PCR, PCR-RFLP, sequencing and similarity analysis, we discovered the diverse species composition of eukaryotic plankton. Total 338 clones (170 at MG100929 and 168 at ES) were analyzed, and then we found 74 phylotypes (49 for MG100929 and 25 for ES). From the phylogenetic analysis, we confirmed various eukaryotic plankton of broad range of taxonomic groups, including Stramenopiles, Cryptophyta, Viridiplantae, Alveolata, Rhizaria, Metazoa, and Fungi. We also found several unreported species in Korea and candidates of new taxonomic entities at levels higher than genus. Especially, the cryptic species diversity including unreported phylotypes of Pirsonia (Stramenopiles) and Perkinsea (Alveolata) suggests that the molecular monitoring method can produce new informative biological data in monitoring the changes in the Nakdong River Mouth ecosystem.

Density Effect and Diversity of Fish in Water System at Both Reservoirs in the Youngsan-ri, Goseong-gun (고성군 용산리의 두 저수 수계에서 어류의 다양성과 밀도 효과)

  • Huh, Man Kyu;Choi, Byoung-Ki
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.533-538
    • /
    • 2015
  • Four sites and one site were used to analyze fish diversity at the water systems of the Sineun reservoir and the Jeonchon reservoir, respectively. The field experiments were conducted to test the density dependence that could lead to population regulation by artificial inferences and environmental changes. We examined the effects of environmental factors on fish densities using SMATR freeware. It was estimated to be reduced to the density effect at four sites in 2012. Shannon-Weaver indices of the diversity (H’) of the Sineun reservoir were similar to those of the Jeonchon reservoir. Species diversity was in a range of 0.645 to 2.105. The H’ value of the upper region was higher than those of middle and low regions were, and values of richness were lower in downstream than upstream. Using the maximum likelihood solution for the removal estimators of two low regions of the river stations, the estimated migration probabilities from the resident fish to the migrated fish for five species (Cyprinus cuvieri, Carassius auratus, Pseudorasbora parva, Misgurnus mizolepis, and Oryzias latipes) had a mean of 0.623. Especially, migration probabilities from the Jeonchon reservoir to the Sineun reservoir for five species were high (a mean of 0.681). The period of migration was suggested to be about one month because of short geographical distances (50 m). We found no significant difference between the three categories in the distribution of the other four species, indicating the species probability was similar among stations.

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Diversity of the genus Sheathia (Batrachospermales, Rhodophyta) in northeast India and east Nepal

  • Necchi, Orlando Jr.;West, John A.;Ganesan, E.K.;Yasmin, Farishta;Rai, Shiva Kumar;Rossignolo, Natalia L.
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.277-288
    • /
    • 2019
  • Freshwater red algae of the order Batrachospermales are poorly studied in India and Nepal, especially on a molecular basis. During a survey in northeast India and east Nepal, six populations of the genus Sheathia were found and analyzed using molecular and morphological evidence. Phylogenetic analyses based on the rbcL gene sequences grouped all populations in a large clade including our S. arcuata specimens and others from several regions. Sheathia arcuata represents a species complex with a high sequence divergence and several smaller clades. Samples from India and Nepal were grouped in three distinct clades with high support and representing new cryptic species: a clade formed by two samples from India, which was named Sheathia assamica sp. nov.; one sample from India and one from Nepal formed another clade, named Sheathia indonepalensis sp. nov.; two samples from Nepal grouped with sequences from Hawaii and Indonesia (only 'Chantransia' stages) and gametophytes from Taiwan, named Sheathia dispersa sp. nov. Morphological characters of the specimens from these three species overlap one another and with the general circumscription of S. arcuata, which lacks the heterocortication (presence of bulbous cells in the cortical filaments) present in other species of the genus Sheathia. Although the region sampled is relatively restricted, the genetic diversity among specimens of these three groups was high and not closely related in the phylogenetic relationship with the other clades of S. arcuata. These data corroborate information from other groups of organisms (e.g., land and aquatic plants) that indicates this region (Eastern Himalaya) as a hotspot of biodiversity.

Biochemical Analysis of a Cytosolic Small Heat Shock Protein, NtHSP18.3, from Nicotiana tabacum

  • Yu, Ji Hee;Kim, Keun Pill;Park, Soo Min;Hong, Choo Bong
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.328-333
    • /
    • 2005
  • Small heat shock proteins (sHSPs) are widely distributed, and their function and diversity of structure have been much studied in the field of molecular chaperones. In plants, which frequently have to cope with hostile environments, sHSPs are much more abundant and diverse than in other forms of life. In response to high temperature stress, sHSPs of more than twenty kinds can make up more than 1% of soluble plant proteins. We isolated a genomic clone, NtHSP18.3, from Nicotiana tabacum that encodes the complete open reading frame of a cytosolic class I small heat shock protein. To investigate the function of NtHSP18.3 in vitro, it was overproduced in Escherichia coli and purified. The purified NtHSP18.3 had typical molecular chaperone activity as it protected citrate synthase and luciferase from high temperature-induced aggregation. When E. coli celluar proteins were incubated with NtHSP18.3, a large proportion of the proteins remained soluble at temperatures as high as $70^{\circ}C$. Native gel analysis suggested that NtHSP18.3 is a dodecameric oligomer as the form present and showing molecular chaperone activity at the condition tested. Binding of bis-ANS to the oligomers of NtHSP18.3 indicated that exposure of their hydrophobic surfaces increased as the temperature was raised. Taken together, our data suggested that NtHSP18.3 is a molecular chaperone that functions as a dodecameric complex and possibly in a temperature-induced manner.

Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region

  • Teinlek, Piyanat;Siripattarapravat, Kannika;Tirawattanawanich, Chanin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.804-811
    • /
    • 2018
  • Objective: Complete mtDNA D-loop sequences of four Thai indigenous chicken varieties, including Pra-dhu-hang-dam (PD), Leung-hang-khao (LK), Chee (CH), and Dang (DA) were explored for genetic diversity and relationships with their potential ancestor and possible associates to address chicken domestication in Thailand. Methods: A total of 220 complete mtDNA D-loop sequences of the four Thai indigenous chicken varieties were obtained by Sanger direct sequencing of polymerase chain reaction amplicons of 1,231 to 1,232 base pair in size. A neighbor-joining dendrogram was constructed with reference complete mtDNA D-loop sequences of Red Junglefowl (RJF) and those different chicken breeds available on National Center for Biotechnology Information database. Genetic diversity indices and neutrality test by Tajima's D test were performed. Genetic differences both within and among populations were estimated using analysis of molecular variance (AMOVA). Pairwise fixation index ($F_{ST}$) was conducted to evaluated genetic relationships between these varieties. Results: Twenty-three identified haplotypes were classified in six haplogroups (A-E and H) with the majority clustered in haplogroup A and B. Each variety was in multiple haplogroups with haplogroups A, B, D, and E being shared by all studied varieties. The averaged haplotype and nucleotide diversities were, respectively 0.8607 and 0.00579 with non-significant Tajima's D values being observed in all populations. Haplogroup distribution was closely related to that of RJF particularly Gallus gallus gallus (G. g. gallus) and G. g. spadiceus. As denoted by AMOVA, the mean diversity was mostly due to within-population variation (90.53%) while between-population variation (9.47%) accounted for much less. By pairwise $F_{ST}$, LK was most closely related to DA ($F_{ST}=0.00879$) while DA was farthest from CH ($F_{ST}=0.24882$). Conclusion: All 4 Thai indigenous chickens are in close relationship with their potential ancestor, the RJF. A contribution of shared, multiple maternal lineages was in the nature of these varieties, which have been domesticated under neutral selection.

Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand

  • Lumkul, Lalita;Sawaswong, Vorthon;Simpalipan, Phumin;Kaewthamasorn, Morakot;Harnyuttanakorn, Pongchai;Pattaradilokrat, Sittiporn
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.153-165
    • /
    • 2018
  • Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pair-wise population differentiation ($F_{st}$ indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the $F_{st}$ indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand's borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS.