• Title/Summary/Keyword: molecular distribution

Search Result 1,397, Processing Time 0.03 seconds

Analysis of Low Molecular Weight Collagen by Gel Permeation Chromatography

  • Yoo, Hee-Jin;Kim, Duck-Hyun;Park, Su-Jin;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.81-84
    • /
    • 2021
  • Collagen, which accounts for one-third of human protein, is reduced due to human aging, and much attention is focused on making collagen into food to prevent such aging. Gel permeation chromatography with Reflective Index (RI) detection (GPC/RI) was chosen as the most suitable instrument to confirm molecular weight distribution, and we explored the use of this technique for analysis of collagen peptide molecular sizes and distributions. Data reliability was verified by matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectrometric analysis. The data were considered meaningful for comparative analysis of molecular weight distribution patterns.

Monte Carlo Simulation of the Molecular Properties of Poly(vinyl chloride) and Poly(vinyl alcohol) Melts

  • Moon, Sung-Doo;Kang, Young-Soo;Lee, Dong-J.
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.491-497
    • /
    • 2007
  • NPT Monte Carlo simulations were performed to calculate the molecular properties of syndiotactic poly(vinyl chloride) (PVC) and syndiotactic poly(vinyl alcohol) (PVA) melts using the configurational bias Monte Carlo move, concerted rotation, reptation, and volume fluctuation. The density, mean square backbone end-to-end distance, mean square radius of gyration, fractional free-volume distribution, distribution of torsional angles, small molecule solubility constant, and radial distribution function of PVC at 0.1 MPa and above the glass transition temperature were calculated/measured, and those of PVA were calculated. The calculated results were compared with the corresponding experimental data and discussed. The calculated densities of PVC and PVA were smaller than the experimental values, probably due to the very low molecular weight of the model polymer used in the simulation. The fractional free-volume distribution and radial distribution function for PVC and PVA were nearly independent of temperature.

Study on the Molecular Weight Distribution Curve of Cellulose Triacetate Acetylated Under Various Temperatures (醋酸纖維素의 醋化溫度가 分子量分配曲線에 미치는 影響)

  • Kim, Dong-Il;Noh, Ick-Sam;Cha, Kyong-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 1957
  • Fibrous cellulose triacetate prepared from purified cotton under various temperatures was dissolved in the solution of 70%, monochloroacetic acid and it was fractionated using water as a precipitant. Eight fractions were obtained through the stepwise precipitation. Degree of polymerization and molecular weight of each fraction were measured viscometrically. Integral and differential molecular weight distribution curve were drawn for each sample prepared under various temperatures and were carefully observed. On this experimental study, following conclusions were obtained: Fractional precipitation can be carried out for fibrous cellulose triacetate in the solution of 70% monochloroacetic acid using water as a precipitant. The differences on the shapes of molecular weight distribution curve were occured on account of the various acetylation temperatures. At the relatively higher acetylation temperatures, the cellulose was randomly degraded and the portion of low degree of polymerization was increased. Commercial acetate, therefore, may not be prepared at above 40$^{\circ}C$ according to the molecular weight distribution curve regardless of higher viscosity and average degree of polymerization. It was concluded that the optimum acetylation temperature for commercial acetate was approximately 30$^{\circ}C$.

  • PDF

Degradation of Humic Acid in Ozone/GAC Process (오존/GAC 공정에서의 부식산 분해 특성)

  • Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.47-52
    • /
    • 2008
  • In this study, GAC adsorption, ozonation and $O_3/GAC$ hybrid processes were investigated for treatment of humic acid. The degradation characteristics and efficiencies of humic acid in each process were evaluated through pH variation, $UV_{254}$ decrease, DOC removal, change of molecular size distribution and by-products formation. DOC removal rate in $O_3/GAC$ hybrid process (80%) was higher than arithmetic sum of ozonation (38%) and GAC adsorption process (19%) by synergism. $UV_{254}$ decrease rate of humic acid was also the highest than any other processes when treated in $O_3/GAC$ hybrid process. Molecular size distribution was not significantly changed in the GAC adsorption process. Main distribution of molecular size of humic acid was converted from 3 k~30 kDa into 0.5 k~3 kDa in ozonation. But the most of large molecular sizes of humic acid converted into small molecules(smaller than 0.5 kDa) in $O_3/GAC$ hybrid process. Quantities of formaldehyde and glyoxal formed in $O_3/GAC$ hybrid process were less than the ones in ozonation.

  • PDF

Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves (충격파 내에서 형성되는 아르곤 기체의 운동 에너지 분포와 속도 분포에 대한 비평형 분자동역학 모의실험 연구)

  • Hwang, Hyon-Seok;Lee, Ji-Hye;Kwon, Chan-Ho;Kim, Hong-Lae;Park, Min-Kyu;Kim, Seong-Shik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.147-153
    • /
    • 2011
  • A series of nonequilibrium molecular dynamics(NEMD) simulations are performed to investigate the kinetic energy and velocity distributions of molecules in shock waves. In the simulations, argon molecules are used as a medium gas through which shock waves are propagating. The kinetic energy distribution profiles reveals that as a strong shock wave whose Mach number is 27.1 is applied, 39.6% of argon molecules inside the shock wave have larger kinetic energy than molecular ionization energy. This indicates that an application of a strong shock wave to argon gas can give rise to an intense light. The velocity distribution profiles in z direction along which shock waves propagate clearly represent two Maxwell-Boltzmann distributions of molecular velocities in two equilibrium regions and one bimodal velocity distribution profile that is attributed to a nonequilibrium region. The peak appearing in the directional temperature in z direction is discussed on a basis of the bimodal velocity distribution in the nonequilibrium region.

Effect of Solubilization Conditions on Molecular Weight Distribution of Enzymatically-Hydrolyzed Silk Peptides (실크의 가용화 조건이 효소분해 실크 펩타이드의 분자량 분포에 미치는 영향)

  • 채희정;인만진;김의용
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.114-118
    • /
    • 1998
  • The effects of fibron solubilization conditions on molecular weight distribution of enzymatically-hydrolyzed silk peptides were investigated. The weight-averaged molecular weights of silk proteins prepared by solubilization with calcium chloride, ethylenediamine and sulfuric acid were 41600, 3308, and 1268 dalton, respectively. Silk peptides in the average molecular weight range of 600-1200 dalton were obtained by protease treatment from solubilized silk fibroin. After the acid hydrolysis of silk protein using hydrochloric acid for 24 hr, silk protein was hydrolyzed to peptides whose average molecular weight and free amino acid content were 145 dalton and 80%, respectively. It was possible to control molecular weight distribution of silk peptides by the combination of solubilization and hydrolysis methods. Among the various treatment methods, acid solubilization followed by protease treatment had an advantage of molecular weight control for the peptide production.

  • PDF

Polyamic Acid Alkylamine Salts(PAAS) (Langmuir-Blodgett(LB) Films의 광학적 및 전기적 특성)

  • 이승엽;강도열;김태완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.277-280
    • /
    • 1997
  • It is important to investigate the molecular arrangement and the orientational distribution in the study of LB films. Polarized UV/visible absorption spectra make it possible to reveal the molecular arrangement and the orientational distribution. It is clarified that the PAAS LB films have specific directions in the molecular arrangement and the orientational distribution, which art different in intensity corresponding to the surface pressure. Unpolarized UV/visible absorption spectra reveal that the surface pressure is proportional to the finn thickness and is related to the molecular orientation. Current-Voltage(I-V) measurements provide that the current decreases as the surface pressure increases and there are certain phenomena called switching phenomena. Switching effort indicates that the current flows in high conductivity during on-state and suddenly decreases into low conductivity during off-state.

  • PDF

Effects of Hydrolysis Time on the Molecular Weight Distribution of Alginates Prepared from Sea Tangle Laminaria japonicus

  • Lim Yeong-Seon;You Byeong-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.113-117
    • /
    • 2005
  • To prepare oligouronic acids from high-molecular-weight alginates, sea tangle Laminaria japonicus alginates were hydrolyzed at $80^{\circ}C$ for various hydrolysis times (HT). The effects of hydrolysis time on the distribution ratios (DR) of the molecular weights (MW) of the hydrolyzed alginates were in-vestigated. As HT increased, the DR of the alginates with MW>500 kDa decreased ex-ponentially, while those with MW=50-100 kDa or MW<50 kDa increased exponentially. For MW=300-500 kDa, DR increased exponentially until HT reached 60 min, and then decreased exponentially. Similarly, for MW=100-300 kDa, DR increased exponentially until HT reached 90 min, and then decreased.

The distribution of magnetic field strength in Orion A region

  • Hwang, Jihye;Kim, Jongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.43.3-43.3
    • /
    • 2019
  • Magnetic fields play an important role in supporting molecular clouds against gravitational collapse. The measured magnetic field strengths in molecular clods enable us to see the effect of magnetic fields in star-forming regions. People have used the Chandrasekhar and Fermi (CF) method to estimate magnetic field strength from observational quantities of molecular cloud density, turbulent velocity and polarization angle dispersion. However, previous studies obtained just one magnetic field strength over the quite large region of a molecular cloud by using the CF method. We here suggest a way to estimate magnetic field strength distribution in Orion A region. We used 450 and 850-micron polarization data of James Clerk Maxwell Telescope (JCMT). Magnetic field strengths were estimated in two wavelengths with 4 pixel resolutions of 16, 20, 24 and 28". Through statistical analysis, we proved the difference of magnetic field strengths between two wavelengths were caused by the difference of their beam sizes. Additionally, we calculated the radii of curvature of polarization segments to select a best pixel resolution for estimating the magnetic field distribution. The pixel resolution should be larger than a radius of curvature. We selected that 20 or 24" pixel resolutions are good choices towards Orion A region.

  • PDF

Molecular Weight Distribution Characterization of Organics for the Dongbok Lake Water by Coagulation and Adsorption of Activated Carbon (동복 호소수의 응집침전 및 활성탄 흡착에 의한 용존유기물 분자량 분포 특성)

  • 정경훈;최형일
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.104-111
    • /
    • 1998
  • The Dongbok lake water before and after alum coagulation and activated carbon adsorption were analyzed in terms of organic contents, molecular weight distributuin (MWD), and UV-absorbance. Dissolved organic compounds in the Dongbok lake were fractionated into three molecular size classes by gel permeation chromatography. The fractionation was reasonably successful in isolating compounds with The bulk of the dissolved carbon was present in compounds of molecular weight in the range of 3,000~10,000. Alum coagulation preferentially treated molecules of high molecular weight, which has molecules larger than 10,000. The dissolved organic carbon (DOC) removal after activated carbon adsorption was high in the Fraction B , IR . The $A_{260}$/DOC ratio after alum and activated carbon treatment the Fraction II, III. This results suggest that the organics remaining after each treatment has a trihalomethane formation potential

  • PDF