• Title/Summary/Keyword: molecular bonding

Search Result 289, Processing Time 0.026 seconds

Biocompatible Individual Dispersion of Single-walled Carbon Nanotubes

  • Najeeb, C.K.;Kim, Duck-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.529-529
    • /
    • 2012
  • Dispersion of carbon nanotubes in biocompatible media are of particular interest for diverse biomedical and nanomedicine applications. Various biomolecules and biopolymers such as DNA, proteins, poly L-lysine, starch, gelatin, steroid biosurfactants, and chitosan have shown capability for the effective dispersion of carbon nanotubes in water. Chitosan has demonstrated capacity for effective dispersion of single-walled carbon nanotubes (SWCNTs) in acidic medium and it also showed tendency to preferentially disperse smaller diameter nanotubes. Chemical functionalizations of chitosan enable its solubility in neutral pH water by reducing the intra and inter molecular hydrogen bonding. Herein, we present a neutral pH water soluble chitosan derivative, chitosan-hydroxyphenyl acetamide (CHPA), obtained by functionalizing the amino groups of chitosan with 4-hydroxyphenyl acetic acid, as an efficient biocompatible dispersant for debundling and solubilization of SWNTs in neutral aqueous solutions. Various process conditions for individual dispersion of SWCNTs are analyzed based on optical absorption and Raman spectroscopy.

  • PDF

Valence band of graphite oxide

  • Jeong, Hye-Gyeong;Kim, Gi-Jeong;Kim, Bong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.321-321
    • /
    • 2011
  • We have investigated the electronic structure of graphite oxide by photoelectron spectroscopy at the Pohang Accelerator Laboratory, Korea. The typical sp2 hybridization states found in graphite were also seen in graphite oxide. However, the ${\pi}$ state disappeared near the Fermi level because of bonding between the ${\pi}$ and oxygen-related states originating from graphite oxide, indicating electron transfer from graphite to oxygen and resulting in a downward shift of the highest occupied molecular orbital (HOMO) state to higher binding energies. The band gap opening increased to about 1.8 eV, and additional oxygen-related peaks were observed at 8.5 and 27 eV.

  • PDF

The effect of Several Pulp properties and freeness treated with different sized cellulase (섬유소 분해효소의 분자량에 따른 조합처리가 종이의 강도 변화 및 표면 변화에 미치는 영향)

  • 김병헌
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.1
    • /
    • pp.75-85
    • /
    • 2001
  • This study confirmed different results according to the molecular weight and pore properties of treated pulp. In this study the pre-treated enzyme material was increasing the beating speed compared with non-treated one. And it was observed that the change of freeness according to the combination ratio depended upon the pores size of pulp and that fibers became flexible owing to the physical deformation of fibers themselves through pre-treated enzyme increasing the flexibility of fibers to increase the contact area of fiber and thus resulting in the increase of specific surface area, the increase of fiber bonding strength and the increase of beating speed.

  • PDF

Selective Separations Using Molecularly Imprinted Membranes (분자 각인 막의 선택적 분리)

  • Lee, Jeong-Woo;Park, Joong-Kon
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.133-141
    • /
    • 2005
  • This review presents the preparation, transport mechanism and application of molecularly imprinted membranes (MIM). Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIM have some advantages; a high capacity due to a large surface area, faster transport of substrate molecules and faster equilibrium of binding cavities compared to molecularly imprinted particles. MIM were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. MIM can be prepared by in-situ polymerization, wet phase inversion, dry phase inversion, and surface imprinting method. MIM can continuously separate mixtures based on facilitated or retarded diffusion of the template. MIM can change their permeability in the presence of templates. MIM have a potential to be used to separate chiral compounds and materials with similar structures. However the application of MIM by the chemical industries is still in its infancy stages.

MEMS for Heterogeneous Integration of Devices and Functionality

  • Fujita, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Future MEMS systems will be composed of larger varieties of devices with very different functionality such as electronics, mechanics, optics and bio-chemistry. Integration technology of heterogeneous devices must be developed. This article first deals with the current development trend of new fabrication technologies; those include self-assembling of parts over a large area, wafer-scale encapsulation by wafer-bonding, nano imprinting, and roll-to-roll printing. In the latter half of the article, the concept towards the heterogeneous integration of devices and functionality into micro/nano systems is described. The key idea is to combine the conventional top-down technologies and the novel bottom-up technologies for building nano systems. A simple example is the carbon nano tube interconnection that is grown in the via-hole of a VLSI chip. In the laboratory level, the position-specific self-assembly of nano parts on a DNA template was demonstrated through hybridization of probe DNA segments attached to the parts. Also, bio molecular motors were incorporated in a micro fluidic system and utilized as a nano actuator for transporting objects in the channel.

Ab initio and Vibrational Predissociation Studies on Methylammonium-(Water)4 Complex: Evidence for Multiple Cyclic and Non-cyclic Hydrogen-bonded Structures

  • Kim, Kwang-Yon;Han, Woon-Hui;Cho, Ung-In;Lee, Yuan T.;Boo, Doo-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2028-2036
    • /
    • 2006
  • The combined ab initio and vibrational predissociation (VP) spectroscopic studies on methylammonium-$(water)_4$ complex aimed at understanding the hydration behavior of an amphiphilic ion core are described. The ab initio calculations predicted eleven low-energy isomers forming cyclic, tripod, chain, and caged structures, and their relative stabilities, total hydration energies and thermodynamic functions at 298 K and 150 K. The excellent correlation between the observed VP spectra and ab initio spectra for bonded N-H, bonded O-H and free O-H stretches suggested co-existence of five cyclic isomers and two non-cyclic isomers in ion beam at 150 K, consistent with the trends of calculated Gibbs free energies.

Design and Applications of Molecularly Imprinted Polymers for Selective Separations (선택적 분리를 위한 분자 각인 고분자의 설계 및 응용)

  • 정수환;오창엽;서정일;박중곤
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2001
  • Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIPs were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. The shape of MIP is divided to particle and membrane. MIP membranes can be prepared by surface imprinting, in-situ polymerization, wet phase inversion and the dry phase inversion method. MIPs have been mainly used for analytical separation and biosensor systems to separate and detect chiral compounds and materials with similar structures. However the application of MIP by the chemical industries is still in its infancy stages. This review summarizes the preparative characteristics and applications of MIP with respect to chiral separations and biosensors.

  • PDF

Thermodynamics of Reactive Dyes with Different Functional Groups (작용기의 종류에 따른 반응염색의 열역학)

  • 도성국
    • Textile Coloration and Finishing
    • /
    • v.10 no.3
    • /
    • pp.36-42
    • /
    • 1998
  • The dyeabilities of C.I. Reactive Blue 19(B19, MW ; 626), C.I. Reactive Blue 4(B4, MW ; 637) and C.I. Reactive Black 5(B5, MW : 991) were investigated. Initial dyeing rates were increased and the amount of dye on the fabric at equilibrium was decreased with temperature like other ordinary dyeing processes. Activation entropy$(\Delta{S}^*)$ was decreased because of loose bonding between dyestuffes and fiber molecules at transition state. It can be clarified that the entire reaction is exothermic and the number of molecular species at transition state becomes greater from decrease in activation enthalpy$(\Delta{H}^*)$ and the increase in activation free energy$(\Delta{G}^*)$ with temperature, respectively. The amount of B19 on the fabric at equilibrium was greater than that of B4, because B4 became unreactive towards textile substrates through hydrolysis. Due to the biggest size of the dye molecule, the reaction rate of B5 was the slowest but its difunctional group played an important role in achieving the greatest amount of dye on the fabric at equilibrium.

  • PDF

Dyeing Properties of Easily Dyeable m-Aramid Knit Fabric (염색이 용이한 메타 아라미드 편성물의 염색성에 관한 연구)

  • Lee, Bum Hoon
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.128-134
    • /
    • 2020
  • Heat and flame protecting cloth is usually made of meta aramid fiber because of its own properties. But the high inter molecular hydrogen bonding and high Tg is the reason of the difficulty to dye meta aramid fiber. Recently, it was commercialized that the easily dyeable meta aramid fiber(AMD) for improving dyeability. In this study, the dyeing properties of AMD dyed with cationic dyes were investigated. The K/S values of AMD were 5~10% higher than these of general meta aramid fiber(AM) in the case of 1%owf caused by the lower crystallinity of AMD. The difference between K/S values of AMD and AM was increased as increasing dyeing concentration. The washing and rubbing fastness grade of AM and AMD were similar and good to very good.

The Crystal and Molecular Structure of Phthalylsulfacetamide

  • Shin, Whan-Chul;Kim, Young-Chang;Koo, Chung-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 1984
  • The crystal structure of phthalylsulfacetamide, one of the long-acting 'sulfa' drugs, has been determined by the X-ray diffraction methods. The crystal is monoclinic with cell dimensions of a = 7.980(3), b = 12.784(2), c = 18.064(7) ${\AA}$ and ${\beta}$= $112.94(2)^{\circ}$, space group $P2_1$/c and Z = 4. The structure was solved by the direct methods and refined to R = 0.048. The sulfonylacetamide moiety is folded with respect to the central phenyl ring and the benzamide and benzoyl planes are nearly perpendicular to each other. This conformation is consistent with those of the relevant molecules containing the corresponding moieties. All of the molecules in the crystal lattice are connected by a three-dimensional hydrogen bonding network.