Browse > Article

Selective Separations Using Molecularly Imprinted Membranes  

Lee, Jeong-Woo (Dept. of Chemical Engineering, Kyungpook National University)
Park, Joong-Kon (Dept. of Chemical Engineering, Kyungpook National University)
Publication Information
KSBB Journal / v.20, no.3, 2005 , pp. 133-141 More about this Journal
Abstract
This review presents the preparation, transport mechanism and application of molecularly imprinted membranes (MIM). Molecular imprinting has now been established as a technique which allows the creation of tailor-made binding sites for many classes of compounds. MIM have some advantages; a high capacity due to a large surface area, faster transport of substrate molecules and faster equilibrium of binding cavities compared to molecularly imprinted particles. MIM were prepared by covalent and non-covalent chemical bonding systems, by interactions between functional monomer and template. MIM can be prepared by in-situ polymerization, wet phase inversion, dry phase inversion, and surface imprinting method. MIM can continuously separate mixtures based on facilitated or retarded diffusion of the template. MIM can change their permeability in the presence of templates. MIM have a potential to be used to separate chiral compounds and materials with similar structures. However the application of MIM by the chemical industries is still in its infancy stages.
Keywords
Molecularly imprinted membranes (MIM); molecularly imprinted polymers (MIP); chiral separation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sheldon, R. A. (1996), Chirotechnology, Marcel Dekker Inc. 18, New York
2 Yoshikawa, M., Izumi, J., Kitao, T., Koya, S., and Sakamoto, S. (1995), Molecularly Imprinted Polymeric Membranes for Optical Resolution, J. Membr. Sci. 108, 171-175   DOI   ScienceOn
3 Matsui, A., J., Takeuchi, T., Yano, K., Muguruma, H., Elgersma, A. V., and Karube, I. (1995), Recognition of Sialic Acid using Molecularly Imprinted Polymer. Anal. Lett. 28, 2317-2323   DOI   ScienceOn
4 Dabulis, K. and Klibanov, A. M. (1992), Molecular Imprinting of Proteins and Other Macromolecules Resulting in New Adsorbents. Biotechnol. Bioeng. 39, 176-185   DOI   PUBMED
5 Kielczynski, R and Bryjak, M. (2005), Molecularly Imprinted Membranes for Cinchona Alkaloids Separation, Sep. Purifi. Tech. 41, 231-235   DOI   ScienceOn
6 Gamez, P., Dunjic, B., Pinel, C., and Lemaire, M. (1995), 'Molecular Imprinting Effect' in the Synthesis of Immobilized Rhodium Complex Catalyst (IRC cat), Tetra. Lett. 36, 8779-8782   DOI   ScienceOn
7 Araki, K., Maruyama, T., Kamiya, N., and Goto, M. (2005), Metal Ion-selective Membrane Prepared by Surface Molecular Imprinting J. Chromatogr. B. 818, 141-145   DOI   ScienceOn
8 Reddy, P. S., Kobayashi, T., and Fujii, N. (2002), Recognition Characteristics of Dibenzofuran by Molecularly Imprinted Polymers Made of Common Polymers, Europ. Polym. J. 38, 779-785   DOI   ScienceOn
9 Kriz, D., Ramstrom, O., and Mosbach, K. (1997), Molecular Imprinting-New Possibilities for Sensor Technology, Anal. Chem. 69, 345A
10 Hong, J. M., Andersson, P. E., Qian, J., and Martin, C. R. (1998), Selectively-Permeable Ultrathin Film Composite Membranes Based on Molecularly-Imprinted Polymers, Chme. Master. 10, 1029-1033
11 Mathew-Krotz, J. and Shea, K. J. (1996), Imprinted Polymer Membranes for the Selective Transport of Targeted Neutral Molecules, J. Am. Chem. Soc. 118, 8154-8155   DOI   ScienceOn
12 Yoshikawa, M., Ooi, T., and Izumi, J. (1999), Alternative Molecularly Imprinted Membranes from a Derivative of Natural Polymer, Cellulose Acetate, J. Appl. Polym. Sci. 72, 493-499   DOI   ScienceOn
13 Yoshikawa, M., Izumi, J., Ooi, T., Kitao, T. Guiver, M. D., and Rovertson, G. P. (1998), Carboxylated Polysulfone Membranes Having a Chiral Recognition Site Induced by an Alternative Molecular Imprinting Technique, Polym. Bull. 40, 517-524   DOI   ScienceOn
14 Park, J. K., Oh, C. Y., and Seo, J. I. (2002), Selective Adsorption of a Symmetric Theophylline Imprinted Membrane Prepared by a Wet Phase Inversion Method, Korean J. Biotechnol. Bioeng. 17, 207-211
15 Yoshikawa, M., Izumi, J., and Kitao, T. (1999), Alternative Molecular Imprinting, a Facile Way to Introduce Chiral Recognition Sites, React. Funct. Polym. 42, 93-102   DOI   ScienceOn
16 Cheong, S. H., McNiven, S., Rachkov, A., Levi, R. Yano, K., and Karube, I. (1997), Testosterone Receptor Binding Mimic Constructed Using Molecular Imprinting, Macromol. 30, 1317-1322   DOI   ScienceOn
17 Kobayashi, T., H. Y. Wang, and N. Fujii (1998), Molecular Imprint Membranes of Polyacrylonitrile Copolymers with Different Acrylic Acid Segments, Anal. Chim. Acta. 365, 81-88   DOI   ScienceOn
18 Kimaro, A., Kelly, L. A., and Murray, G. M. (2001), Molecularly Imprinted Ionically Permeable Membrane for Uranyl Ion, Chem. Commun. 14, 1282-1283
19 Wang, H. Y., Kobayashi, Y., Fukaya, T., and Fujii, N. (1997), Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique. 2. Influence of Coagulation Temperature in the Phase Inversion Process on the Encoding in Polymeric Membranes, Langmuir. 13, 5396-5400   DOI   ScienceOn
20 Matsui, J., Miyoshi, Y., Doblhoff-Dier, O., and Takeuchi, T. (1995), A Molecularly Imprinted Synthetic Polymer Receptor Selective for Atrazine, Anal. Chem. 67, 4404-4408   DOI
21 Wang, H. Y., Kobayashi, T., and Fujii, N. (1997), Surlace Molecular Imprinting on Photosensitive Dithiocarbamoylpolyacrylonitrile Membranes using Photograft Polymerization, J. Chem. Technol. Biotechnol. 70, 355-362   DOI   ScienceOn
22 Ramamoorthy, M. and Ulbricht, M. (2003), Molecular Imprinting of Cellulose Acetate-sulfonated Polysulfone Blend Membranes for Rhodamine B by Phase Inversion Technique, J. Membr. Sci. 213, 207-214
23 Piletsky, S. A., Piletskaya, E. V., Panasyuk, T. L., El'skaya, A. V., Levi, R., Karube, I., and Wulff, G. (1998), Imprinted Membranes for Sensor Technology: Opposite Behavior of Covalently and Noncovalently Imprinted Membranes, Macromol. 31, 2137-2140   DOI   ScienceOn
24 Kobayashi, T., Reddy, P. S., Ohta, M., Abe, M., and N. Fujii (2003), Molecularly Imprinted Polysulfone Membranes Having Acceptor Sites for Donor Dibenzofuran as Novel Membrane Adsorbents: Charge Transfer Interaction as Recognition Origin, Chem. Mater. 14, 2499-2505   DOI   ScienceOn
25 Park, J. K. and Kim, S. J. (2004), Separation of Phenyalanine by Ultrafiltration Using D-Phe Imprinted Polyacrylonitrile-Poly(acrylic acid)-Poly(acryl amide) Terpolymer Membrane, Korea J. Chem. Eng. 21, 994-998   DOI   ScienceOn
26 Spivak, D. A. and Campbell, J. (2001), Systematic Study of Steric and Spatial Contributions to Molecular Recognition by Non-covalent Imprinted Polymer, Analyst. 126, 793-797   DOI   ScienceOn
27 Piletsky, S. A., Dubey, I. Y., Fedoryak, D. M., and Kukhar, V. P. (1990), Substrate-selective Polymeric Membranes. Selective Transfer of Nucleic Acid Components, Biopolym. Kletka. 6, 55-58
28 Reddy, P. S., Kobayashi, T., Abe, M., and Fujii N. (2002), Molecular Imprinted Nylon-6 as a Recognition Material of Amino Acids, Europ. Polym. J. 38, 521-529   DOI   ScienceOn
29 Yoshikawa, M. and Izumi, J. (2003), Chiral Recognition Sites Converted from Tetrapeptide Derivatives Adsopting Racemates as Print Molecules, Macromol. Biosci. 3, 487-498   DOI   ScienceOn
30 Yoshikawa, M., Izumi, J., Kitao, T., and Sakamoto, S. (1997), Alternative Molecularly Imprinted Polymeric Membranes from a Tetrapeptide Residue consisting of D- or L-Amino Acid, Macromol. Rapid Commun. 18, 761-767   DOI   ScienceOn
31 Sergeyeva, T. A., Piletsky, S. A., Brovko, A. A., Slinchenko, L. A., Sergeeva, L. M., Panasyuk, T. L., and El'skaya, A. V. (1999), Conductimetric Sensor for Atrazine Detection Based on Molecularly Imprinted Polymer Membranes, Analyst. 124, 331-334   DOI   ScienceOn
32 Kempe, M. and Mosbach, K. (1995), Separation of Amino Acids, Peptides and Proteins on Molecularly Imprinted Stationary Phase, J. Chromatogr. A. 691, 317-323   DOI   PUBMED   ScienceOn
33 Trotta, F., Drioli, E., Baggiani, C., and Lacopo, D. (2002), Molecular Imprinted Polymeric Membrane for Narigin Recognition, J. Membr. Sci. 201, 77-84   DOI   ScienceOn
34 Piletsky, S. A., Panasyuka, T. L., Piletskayaa, E. V., Nichollsb, I. A., and Ulbrichtc, M. (2001), Receptor and Transport Properties of Imprinted Polymer Membranes - a review, J. Mem. Sci. 157, 263-278   DOI   ScienceOn
35 Hilal, N. and Kochkodan, V. (2003), Surface Modified Microfiltration Membranes with Molecularly Recognising Properties. J. Mem Sci. 213, 97-113   DOI   ScienceOn
36 Rachkov A. E., Cheong, S. H., El'skaya, A. V., Yano, K., and Karube, I. (1998), Molecularly Imprinted Polymers as Artificial Steroid Receptors, Polym. Adv. Technol. 9, 511-519   DOI   ScienceOn
37 Cheong, S. H., Sub, M. G., Park, J. K., and Karube, I. (1998), Selective Separation of Testosterone using Biofunctional Polymer, J. Kor. Ins. Chem. Eng. 36, 1, 27-33
38 Cheong, S. H., Rachkov, A. E., Park, J. K., Yano, K., and Karube, I. (1998), Synthesis and Binding Properties of a Noncovalent Molecularly Imprinted Testosterone-Specific Polymer, J. Polym. Sci. : Part A : Polym. Chem. 36, 1725-1732   DOI   ScienceOn
39 Brewster, J. H. (1986), Stereochemistry and the Origins of Life, J. Chem. Edu. 63, 667-669   DOI
40 Sellergren, B. and Hall, A. J. (2001), Molecularly Imprinted Polymers - Man-Made Mimics of Antibodies and Their Application in Analytical Chemistry, Elservier. 21
41 Park, J. K., Kim, S. J., and Lee, J. W. (2003), Adsorption Selectivity of Phenylalanine Imprinted Polymer Prepared by the Wet Phase Inversion Method, Korea J. Chem. Eng. 20, 1066-1072   DOI   ScienceOn
42 McNiven, S., Yokobayashi, Y., Cheong, S. H., and Karube, I. (1997), Enhancing the Selectivity of Molecularly Imprinted Polymers. Chem. Lett. 12, 1297-1298
43 Wang, H. Y., Xia, S. L., Sun, H., Liu, Y. K., Cao, S. K., and Kobayashi, T. (2004), Molecularly Imprinted Copolymer Membranes Functionalized by Phase Inversion Imprinting for Uracil Recognition and Permselective Binding, J. Chromatogr. B. 804, 127-134   DOI   ScienceOn
44 Ramamoorthy, M. and Ulbricht, M. (2004), Evalution of Molecularly Imprinted Polymer Blend Filtration Membrane under Solid Phase Extraction Conditions, Sep. Purifi. Tech. 39, 211-219   DOI   ScienceOn
45 Levi, R. S. McNiven, S. A. Piletsky, S. H. Cheong, K. Yano, and I. Karube (1997), Optical Detection of Chloramphenicol Using Molecularly Imprinted Polymers, Anal. Chem. 67, 11, 2017-2021
46 Hong, J. M., Anderson, P. E., Qian, J., and Martin, C. R. (1998), Selectively-Permeable Ultrathin Film Composite Membranes Based on Molecularly-Imprinted Polymers, Chem. Master. 10, 1029-1033   DOI   ScienceOn
47 Yoshikawa, M., Izumi, J., Kitao, T., and Sakamoto, S. (1996), Molecularly Imprinted Polymeric Membranes Containing DIDE Derivatives for Optical Resolution of Amino Acids, Macromol. 29, 8197-8203   DOI   ScienceOn
48 Yoshikawa, M. J. and Izumi, T. Kitao, (1996), Enantioselective Electrodialysis of N-alpha-acetyltryptophans through Molecularly Imprinted Polymeric Membranes. Chem. Lett. 8, 611-612
49 Pilestsky, S. A., Piletskaya, E. V., Elgersma, A. V. Yano, K., and Karube, I. (1995), Atrazine Sensing by Molecularly Imprinted Membranes, Biosen. Bioelect. 10, 959-964   DOI   ScienceOn
50 Wulff, G. (1993), Molecular Interactions in Bioseparations, edited by That T. Ngo. 363, Plenium Press, New York
51 Zhang, T., Liu, P., Chen, W., Wang, J., and Li, K. (2001), Influence of Intramolecular Hydrogen Bond of Templates on Molecular Recognition of Molecularly Imprinted Polymers, Anal. Chim. Acta. 450, 53-61   DOI   ScienceOn
52 Fieser, L. F. and Fieser, M. (1952), Textbook of Organic Chemistry, Maruzen Publishing Company, 241-245
53 Wang, H. Y., Kobayashi, T., and Fujii, T. (1996), Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique, Langmuir. 12, 4850-4856   DOI   ScienceOn
54 Sergeyeva, T. A., Matuschewski, H., Piletsky, S. A., Bendig, J., Schedler, U., and Ulbricht, M. (2001), Molecularly Imprinted Polymer Membrane for Substance-selective Soild-phase Extrantion from Water by Surface Photo-grafting Polymerization, J. Chromatogr. A. 907, 89-99   DOI   PUBMED   ScienceOn
55 Mayes, A. G. and Mosbach, K. (1996), Molecularly Imprinted Polymer Beads: Suspension Polymerization using a Liquid Perfluorocarbon as the Dispersing Phase, Anal. Chem. 68, 3769-3774   DOI   ScienceOn
56 Yoshikawa, M., Shimada, A., and Izumi, J. (2001), Novel Polymeric Membranes Having Chiral Recognition Sites Converted from Tripeptide Derivatives, Analyst. 126, 775-780   DOI   ScienceOn
57 Kondo, Y. and Yoshikawa, M. (2001), Effect of Solvent Composition on Chiral Recognition Ability of Molecularly Imprinted DIDE Derivatives, Analyst. 126, 781-783   DOI   ScienceOn
58 Hattori, K., Hiwatari, M., Iiyarna, C., Yoshimi, Y, Kohori, F., Sakai, K. and Piletsky, S. A. (2004), Gate Effect of Theophylline-Imprinted Polymers Grafted to the Cellulose by Living Radical Polymerization, J. Membr. Sci. 233, 169-173   DOI   ScienceOn
59 Mathew-Krotz, J. and Shea, K. J. (1996), Imprinted Polymer Membranes for the Selective Transport of Targeted Neutral Molecules, J. Am. Chem. Soc. 118, 8154-8155   DOI   ScienceOn
60 Yoshikawa, M., Izumi, J., Guiver, M. D., and Robertson, G. P. (2001), Recognition and Selective Transport of Nucleic Acid Components through Molecularly Imprinted Polymeric Membranes, Macromol. Mater. Eng. 286, 52-59   DOI   ScienceOn
61 Lehmann, M., Brunner, H., and Tovar, G. E. M. (2003), Molekular Gepragte Nanopartikel als Selektive Phase in Komposit-Membrane: Hydrodynamik und Stofftrennung in Nanoskaligen Schuttungen, Chem. Ing. Thechn. 75, 149-153   DOI   ScienceOn
62 Hornback, J. M. (1998), Organic Chemistry, Brooks/Cole Publishing Company, 245
63 Petcu, M., Schaare, P. N., and Cook, C. J. (2004), Propofol-Imprinted Membranes with Potential Applications in Biosensors, Anal. Chim. Acta. 504, 73-79   DOI   ScienceOn
64 Donato, L., Figoil, A and Drioli, E. (2005), Novel Composite Poly(4-vinylpridine)/Polypropylene Membranes with Recognition Properties for (S)-naproxen, J. Pharm. Bio. Anal. 37, 1003-1008   DOI   ScienceOn
65 Sellegren, B. (1999), Polymer- and Template-related Factors Influencing the Efficiency in Molecularly Imprinted Solid-phase Extractions, TRAC-Trend Anal. Chem. 18, 164-174   DOI   ScienceOn
66 Suedeea, R., Srichanab, T., Chuchomea, T., and Kongmarka, U. (2004), Use of Molecularly Imprinted Polymers from a Mixture of Tetracycline and its Degradation Products to Produce Affinity Membranes for the Removal of Tetracycline from Water, J. Chromatogr. B. 811, 191-200
67 Piletsky, S. A., panasyuk, T. L., Piletskaya, E. V., Nicholls, I. A., and Ulbricht, M. (1999), Receptor and Transport Properties of Imprinted Polymer Membranes, J. Mem. Sci. 157, 263-278   DOI   ScienceOn
68 Takeuchi T. and J. Matsui (1996), Molecular Imprinting : An Approach to Tailor Made Synthetic Polymers with Biomimetic Functions, Acta. polym. 47, 471-480   DOI   ScienceOn
69 Kim, S. J. (2004), 'Streo-selective Separation by Ultrafiltration Using D-phenylalanine Imprinted Membrane', MS Thesis, Kyungpook National University, Taegu, Korea
70 Lehmann, M., Brunner, H., and Tovar, G. E. M. (2003), Selective Separations and Hydrodynamic Studies: a New Approach Using Molecularly Imprinted Nanosphere Composite Membranes, Desalination. 149, 315-321   DOI   ScienceOn
71 Piletsky, S. A., Matuschewski, H., Schedler, U., Wilpert, A., Piletska, E. V., Thiele, T. A., and Ulbricht, M. (2000), Surlace Functionalization of Porous Polypropylene Membranes with Molecularly Imprinted Polymers by Photograft Copolymerization in Water, Macromol. 33, 3092-3098   DOI   ScienceOn
72 Ulbrichta, M., Belter, M., Langenhangen, M., Schneider, F., and Weigel, W. (2002), Novel Molecularly Imprinted Polymer (MIP) Composite Membranes Via Controlled Surlace and Pore Functionalizations, Desalination. 149, 293-295   DOI   ScienceOn
73 Haginaka, J. and Kagawa, C. (2002), Uniformly Sized Molecularly Imprinted Polymer for d-chlorpheniramine Evaluation of Retention and Molecular Recognition Properties in an Aqueous Mobile Phase, J. Chromatogr. A. 948, 77-84   DOI   PUBMED   ScienceOn
74 Matsui, J., T. Kato, T. Takeuchi, M. Suzuki, K. Yokoyama, E. Tamiya, and I. Karube (1993), Molecular Recognition in Continuous Polymer Rods Prepared by a Molecular Imprinting Technique, Anal. Chem. 65, 2223-2224   DOI   ScienceOn
75 Hattori, K., Yoshimi, Y., and Sakai, K. (2001), Gate Effect of Cellulosic Dialysis Membrane Grafted with Molecularly Imprinted Polymer, J. Chem. Eng. Jpn. 34, 1466-1469   DOI   ScienceOn
76 Kobayashi, T., Wang, H. Y., and Fujii, N. (1995), Molecular Imprinting of Theophylline in Acrylonitrile-Acrylic Acid Copolymer Membrane, Chem. Lett. 10, 927-928
77 Marx-Tibbon, S. and Willner, J. (1994), Photostimulated Imprinted Polymers: A Light-regulated Medium for Transport of Amino Acids, J. Chem. Soc., Chem. Commun. 1261-1262
78 Yoshigawa, M., Izumi, J. and Kitao, T. (1997), Enantioselective Electrodialysis of Amino Acids with Charged Polar Side Chains through Molecularly Imprinted Polymeric Membranes Containing DIDE Derivatives, Polym. J. 29, 205-210   DOI   ScienceOn