• 제목/요약/키워드: molecular assembly

검색결과 334건 처리시간 0.036초

Hydrogen-bonded Molecular Network of Anthraquinone on Au(111)

  • Kim, Ji-Yeon;Yoon, Jong-Keon;Park, Ji-Hun;Kim, Ho-Won;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.107-107
    • /
    • 2011
  • Supramolecular structures of anthraquinone molecules on a metallic surface are studied using scanning tunneling microscope (STM) under ultrahigh-vacuum conditions. When we deposited anthraquinone molecules on Au(111) substrate, the molecules formed three different phases (Chevron type, tetragon type and disordered type) on the surface. Based on our STM measurements, we proposed models for the observed molecular structures. Chevrons are consisted of several molecular chains, which make well-ordered two-dimensional islands by some weak interrow interactions and we could observe tetragon structures which make array of (111) metallic surface. each molecular rows in the chevrons are stabilized by two parallel O-H hydrogen bonds and disordered structures are observed 1-dimensional phase with hydrogen bond. First-principles calculations based on density functional theory are performed to reproduce the proposed models. Distances and energy gains for each intermolecular bond are estimated. In this presentation, we explain possible origins of these molecular structures in terms of hydrogen bonds, Van der Waals interactions and molecule-substrate interactions.

  • PDF

UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export

  • Shen, Hai-Hong
    • BMB Reports
    • /
    • 제42권4호
    • /
    • pp.185-188
    • /
    • 2009
  • Transcripts contain introns that are usually removed from premessenger RNA (MRNA) in the process of pre-mRNA splicing. After splicing, the mature RNA is exported from the nucleus to the cytoplasm. The splicing and export processes are coupled. UAP56 protein, which is ubiquitously present in organisms from yeasts to humans, is a DExD/H-box family RNA helicase that is an essential splicing factor with various functions in the prespliceosome assembly and mature spliceosome assembly. Collective evidence indicates that UAP56 has an essential role in mRNA nuclear export. This mini-review summarizes recent evidence for the role of UAP56 in pre-mRNA splicing and nuclear export.

Mechanical/Biochemical Analysis of Cell Adhesion Strengthening (세포흡착 거동의 기계적/생화학적 분석)

  • Shin, Heung-Soo
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1455-1457
    • /
    • 2008
  • Cell adhesion is a coordinated process involving initial binding of integrin receptors to extracellular matrix (ECM), recruitment of adhesion proteins, and focal adhesion assembly. The formation of mechanically stable focal adhesion assembly of cells within surrounding ECM is a key parameter to direct numerous cellular functions including cell migration, differentiation, and apotosis. With current cell adhesion assays, it is difficult to understand contributions of each coordinated event on evolution of cell adhesion strengthening since cells spontaneously spread upon their adhesion to the substrate, thus remodeling their cytoskeletal structure. In this presentation, novel approaches for analysis of cell adhesion strengthening process based on the combination of mechanical device, micro-patterned substrates, and molecular biological techniques will be discussed.

  • PDF

Fabrication of Microcapsules Encapsulating Fluorescent Nanoparticles and Visualization of Their Inclusion (형광 나노입자를 수용하는 마이크로캡슐의 제작 및 수용 가시화)

  • Kim, Eun-Young;Kim, Hyoung-Hoon;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • 제9권2호
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a fabrication method of microcapsules encapsulating fluorescent nanoparticles sensitive to an organic liquid, which is potentially applicable to the encapsulation of protein, cell and drug. It uses the supra-molecular self-assembly of a block copolymer at the interface of the stable and controllable droplets of water suspended with fluorescent nanoparticles and the polymer solved organic. The size and uniformity of the microcapsules were examined for the various polymer concentrations by using SEM image analysis. The maximum standard deviation of the produced microcapsules of less than 3.5% was obtained from the microcapsules produced from the same conditions. The inclusion of fluorescent nanoparticles was visualized in the fluorescence microscope and by using TEM image. It is shown that this fabrication method can provide the uniform size microcapsules with a higher inclusion.

MEMS for Heterogeneous Integration of Devices and Functionality

  • Fujita, Hiroyuki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권3호
    • /
    • pp.133-139
    • /
    • 2007
  • Future MEMS systems will be composed of larger varieties of devices with very different functionality such as electronics, mechanics, optics and bio-chemistry. Integration technology of heterogeneous devices must be developed. This article first deals with the current development trend of new fabrication technologies; those include self-assembling of parts over a large area, wafer-scale encapsulation by wafer-bonding, nano imprinting, and roll-to-roll printing. In the latter half of the article, the concept towards the heterogeneous integration of devices and functionality into micro/nano systems is described. The key idea is to combine the conventional top-down technologies and the novel bottom-up technologies for building nano systems. A simple example is the carbon nano tube interconnection that is grown in the via-hole of a VLSI chip. In the laboratory level, the position-specific self-assembly of nano parts on a DNA template was demonstrated through hybridization of probe DNA segments attached to the parts. Also, bio molecular motors were incorporated in a micro fluidic system and utilized as a nano actuator for transporting objects in the channel.

Poxvirus under the eyes of electron microscope

  • Jaekyung Hyun
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.11.1-11.9
    • /
    • 2022
  • Zoonotic poxvirus infections pose significant threat to human health as we have witnessed recent spread of monkeypox. Therefore, insights into molecular mechanism behind poxvirus replication cycle are needed for the development of efficient antiviral strategies. Virion assembly is one of the key steps that determine the fate of replicating poxviruses. However, in-depth understanding of poxvirus assembly is challenging due to the complex nature of multi-step morphogenesis and heterogeneous virion structures. Despite these challenges, decades of research have revealed virion morphologies at various maturation stages, critical protein components and interactions with host cell compartments. Transmission electron microscopy has been employed as an indispensable tool for the examination of virion morphology, and more recently for the structure determination of protein complexes. In this review, we describe some of the major findings in poxvirus morphogenesis and the contributions of continuously advancing electron microscopy techniques.

녹색형광단백질로 구성된 분자광다이오드의 전자전달 특성

  • Nam, Yun-Seok;Choe, Jeong-U;Lee, Won-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.149-152
    • /
    • 2000
  • In recent years, various artificial molecular photodiode have been fabricated by mimicking the electron transport function of biological photosynthesis. And now, we have been investigated the protein-organic hetero thin film photodiode using GFP as an sensitizer based on the redox potential difference of functional molecules. In this paper, shows molecular photodiode consisting of green fluorescence protein(GFP). viologen and TCNQ. The TCNQ and viologen were deposited onto ITO coated glass by LB technique. And GFP molecule was adsorption onto the viologen LB film surface by self-assembly method. Finally, The Al deposition onto GFP/viologen/TCNQ film surface was performed to make a top electrode. As a result, The MIM(metal/Insulator/Metal) structured device was constructed. The input light of 460nm wavelength was generated by the xenon lamp system, and then the photocurrent produced from the molecular device was detected through a current-voltage(I-V) measuring unit (SMU Model 236, Keithley, USA). An artificial molecular photodiode using protein(GFP)-adsorbed hetero-LB film is presented as a model system for the bioelectronic device based on the biomimesis.

  • PDF

Nanomanipulation and Nanomanufacturing based on Ion Trapping and Scanning Probe Microscopy (SPM)

  • Kim, Dong-Whan;Tae, Won-Si;Yeong, Maeng-Hui;K. L. Ekinci
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.530-537
    • /
    • 2004
  • Development of a versatile nanomanipulation tool is an overarching theme in nanotechnology. Such a tool will likely revolutionize the field given that it will enable fabrication and operation of a wealth of interesting nanodevices. This study seeks funding to create a novel nanomanipulation system with the ultimate goal of using this system for nanomanufacturing at the molecular level. The proposed design differs from existing approaches. It is based on a nanoscale ion trap integrated to a scanning prove microscope (SPM) tip. In this design, molecules to be assembled will be ionized and collected in the nanoscale ion trap all in an ultra high vacuum (UHV) environment. Once filled with the molecular ions, the nanoscale ion trap-SPM tip will be moved on a substrate surface using scanning probe microscopy techniques. The molecular ions will be placed at their precise locations on the surface. By virtue of the SPM, the devices that are being nanomanufactured will be imaged in real time as the molecular assembly process is carried out. In the later stages, automation of arrays of these nanomanipulators will be developed.

  • PDF

Expression and cDNA Cloning of klp-12 Gene Encoding an Ortholog of the Chicken Chromokinesin, Mediating Chromosome Segregation in Caenorhabditis elegans

  • Ali, M. Yusuf;Khan, M.L.A.;Shakir, M.A.;Kobayashi, K. Fukami;Nishikawa, Ken;Siddiqui, Shahid S.
    • BMB Reports
    • /
    • 제33권2호
    • /
    • pp.138-146
    • /
    • 2000
  • In eukaryotes, chromosomes undergo a series of complex and coordinated movements during cell division. The kinesin motor proteins, such as the chicken Chromokinesin, are known to bind DNA and transport chromosomes on spindle microtubles. We previously cloned a family of retrograde C-terminus kinesins in Caenorhabditis elegans that mediate chromosomal movement during embryonic development. Here we report the cloning of a C. elegans klp-12 cDNA, encoding an ortholog of chicken Chromokinesin and mouse KIF4. The KLP-12 protein contains 1609 amino acid and harbors two leucine zipper motifs. The insitu RNA hybridization in embryonic stages shows that the klp-12 gene is expressed during the entire embryonic development. The RNA interference assay reveals that, similar to the role of Chromokinesin, klp-12 functions in chromosome segregation. These results support the notion that during mitosis both types, the anterograde N-terminus kinesins such as KLP-12 and the retrograde C-terminus kinesins, such as KLP-3, KLP-15, KLP-16, and KLP-17, may coordinate chromosome assembly at the metaphase plate and chromosomal segregation towards the spindle poles in C. elegans.

  • PDF