DOI QR코드

DOI QR Code

Poxvirus under the eyes of electron microscope

  • Jaekyung Hyun (Department of Convergence Medicine, School of Medicine, Pusan National University)
  • Received : 2022.09.06
  • Accepted : 2022.10.10
  • Published : 2022.12.31

Abstract

Zoonotic poxvirus infections pose significant threat to human health as we have witnessed recent spread of monkeypox. Therefore, insights into molecular mechanism behind poxvirus replication cycle are needed for the development of efficient antiviral strategies. Virion assembly is one of the key steps that determine the fate of replicating poxviruses. However, in-depth understanding of poxvirus assembly is challenging due to the complex nature of multi-step morphogenesis and heterogeneous virion structures. Despite these challenges, decades of research have revealed virion morphologies at various maturation stages, critical protein components and interactions with host cell compartments. Transmission electron microscopy has been employed as an indispensable tool for the examination of virion morphology, and more recently for the structure determination of protein complexes. In this review, we describe some of the major findings in poxvirus morphogenesis and the contributions of continuously advancing electron microscopy techniques.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (grant number 2022R1A2C1005885) and Pusan National University Research Grant, 2021.

References

  1. M..W.. Bahar, S..C.. Graham, D..I.. Stuart, J..M.. Grimes, Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure 19(7), 1011-1020 (2011). https://doi.org/10.1016/j.str.2011.03.023 
  2. T.A. Bharat, L.R. Castillo Menendez, W.J. Hagen, V. Lux, S. Igonet, M. Schorb, F.K. Schur, H.G. Krausslich, J.A. Briggs, Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc. Natl. Acad. Sci. U S A 111(22), 8233-8238 (2014). https://doi.org/10.1073/pnas.1401455111 
  3. T.A. Bharat, T. Noda, J.D. Riches, V. Kraehling, L. Kolesnikova, S. Becker, Y. Kawaoka, J.A. Briggs, Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc. Natl. Acad. Sci. U S A 109(11), 4275-4280 (2012). https://doi.org/10.1073/pnas.1120453109 
  4. J. Cairns, The initiation of vaccinia infection. Virology 11, 603-623 (1960). https://doi.org/10.1016/0042-6822(60)90103-3 
  5. F.J. Chichon, M.J. Rodriguez, C. Risco, A. Fraile-Ramos, J.J. Fernandez, M. Esteban, J.L. Carrascosa, Membrane remodelling during vaccinia virus morphogenesis. Biol. Cell. 101(7), 401-414 (2009). https://doi.org/10.1042/BC20080176 
  6. P. Chlanda, M.A. Carbajal, M. Cyrklaf, G. Grifths, J. Krijnse-Locker, Membrane rupture generates single open membrane sheets during vaccinia virus assembly. Cell. Host Microbe 6(1), 81-90 (2009). https://doi.org/10.1016/j.chom.2009.05.021 
  7. R.C. Condit, A. Motyczka, Isolation and preliminary characterization of temperature-sensitive mutants of vaccinia virus. Virology 113(1), 224-241 (1981). https://doi.org/10.1016/0042-6822(81)90150-1 
  8. R.C. Condit, N. Moussatche, P. Traktman, In a nutshell: structure and assembly of the vaccinia virion. Adv. Virus Res. 66, 31-124 (2006). https://doi.org/10.1016/S0065-3527(06)66002-8 
  9. R.C. Condit, E.G. Niles, Orthopoxvirus genetics. Curr. Top. Microbiol. Immunol. 163, 1-39 (1990). https://doi.org/10.1007/978-3-642-75605-4_1 
  10. M. Cyrklaf, A. Linaroudis, M. Boicu, P. Chlanda, W. Baumeister, G. Grifths, J. Krijnse-Locker, Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLoS One 2(5), e420 (2007). https://doi.org/10.1371/journal.pone.0000420 
  11. M. Cyrklaf, C. Risco, J.J. Fernandez, M.V. Jimenez, M. Esteban, W. Baumeister, J.L. Carrascosa, Cryo-electron tomography of vaccinia virus. Proc. Natl. Acad. Sci. U S A 102(8), 2772-2777 (2005). https://doi.org/10.1073/pnas.0409825102 
  12. S. Dales, An electron microscope study of the early association between two mammalian viruses and their hosts. J. Cell. Biol. 13, 303-322 (1962). https://doi.org/10.1083/jcb.13.2.303 
  13. S. Dales, V. Milovanovitch, B.G. Pogo, S.B. Weintraub, T. Huima, S. Wilton, G. McFadden, Biogenesis of vaccinia: isolation of conditional lethal mutants and electron microscopic characterization of their phenotypically expressed defects. Virology 84(2), 403-428 (1978). https://doi.org/10.1016/0042-6822(78)90258-1 
  14. S. Dales, E.H. Mosbach, Vaccinia as a model for membrane biogenesis. Virology 35(4), 564-583 (1968). https://doi.org/10.1016/0042-6822(68)90286-9 
  15. S. Dales, B.G. Pogo, Biology of poxviruses. Virol. Monogr. 18, 1-109 (1981). https://doi.org/10.1007/978-3-7091-8625-1 
  16. S. Dales, L. Siminovitch, The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy. J. Biophys. Biochem. Cytol. 10, 475-503 (1961). https://doi.org/10.1083/jcb.10.4.475 
  17. I.K. Damon, Poxviruses, ed. by D.M. Knipe, P.M. Howley. Fields Virology, vol. 2, 6th edn., (Lippincott Williams & Wilkins, 2013, Philadelphia, PA, USA) 
  18. J. Dubochet, M. Adrian, K. Richter, J. Garces, R. Wittek, Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy. J. Virol. 68(3), 1935-1941 (1994). https://doi.org/10.1128/JVI.68.3.1935-1941.1994 
  19. J. Dubochet, J. Lepault, R. Freeman, J.A. Berriman, J.C. Homo, Electron-Microscopy of Frozen Water and Aqueous-Solutions. J. Microsc. 128(Dec), 219-237 (1982). https://doi.org/10.1111/j.1365-2818.1982.tb04625.x 
  20. D. Garriga, S. Headey, C. Accurso, M. Gunzburg, M. Scanlon, F. Coulibaly, Structural basis for the inhibition of poxvirus assembly by the antibiotic rifampicin. Proc. Natl. Acad. Sci. U S A 115(33), 8424-8429 (2018). https://doi.org/10.1073/pnas.1810398115 
  21. G. Grifths, R. Wepf, T. Wendt, J.K. Locker, M. Cyrklaf, N. Roos, Structure and assembly of intracellular mature vaccinia virus: isolated-particle analysis. J. Virol. 75(22), 11034-11055 (2001). https://doi.org/10.1128/JVI.75.22.11034-11055.2001 
  22. C. Grimm, J. Bartuli, B. Boettcher, A.A. Szalay, U. Fischer, Structural basis of the complete poxvirus transcription initiation process. Nat. Struct. Mol. Biol. 28(10), 779-788 (2021). https://doi.org/10.1038/s41594-021-00655-w 
  23. C. Grimm, H.S. Hillen, K. Bedenk, J. Bartuli, S. Neyer, Q. Zhang, A. Huttenhofer, M. Erlacher, C. Dienemann, A. Schlosser, H. Urlaub, B. Bottcher, A.A. Szalay, P. Cramer, U. Fischer, Structural basis of poxvirus transcription: vaccinia RNA polymerase complexes. Cell 179(7), 1537-1550 e1519 (2019). https://doi.org/10.1016/j.cell.2019.11.024 
  24. T. Gunther, L. Haas, M. Alawi, P. Wohlsein, J. Marks, A. Grundhof, P. Becher, N. Fischer, Recovery of the first full-length genome sequence of a parapoxvirus directly from a clinical sample. Sci. Rep. 7(1), 3734 (2017). https://doi.org/10.1038/s41598-017-03997-y 
  25. J. Heuser, Deep-etch EM reveals that the early poxvirus envelope is a single membrane bilayer stabilized by a geodetic "honeycomb" surface coat. J. Cell. Biol. 169(2), 269-283 (2005). https://doi.org/10.1083/jcb.200412169 
  26. H.E. Huxley, Electron microscope studies on the structure of natural and synthetic protein flaments from striated muscle. J. Mol. Biol. 7, 281-308 (1963). https://doi.org/10.1016/s0022-2836(63)80008-x 
  27. J. Hyun, H. Matsunami, T.G. Kim, M. Wolf, Assembly mechanism of the pleomorphic immature poxvirus scaffold. Nat. Commun. 13(1), 1704 (2022). https://doi.org/10.1038/s41467-022-29305-5 
  28. J.K. Hyun, C. Accurso, M. Hijnen, P. Schult, A. Pettikiriarachchi, A.K. Mitra, F. Coulibaly, Membrane remodeling by the double-barrel scaffolding protein of poxvirus. PLoS Pathog 7(9), e1002239 (2011). https://doi.org/10.1371/journal.ppat.1002239 
  29. J.K. Hyun, F. Coulibaly, A.P. Turner, E.N. Baker, A.A. Mercer, A.K. Mitra, The structure of a putative scaffolding protein of immature poxvirus particles as determined by electron microscopy suggests similarity with capsid proteins of large icosahedral DNA viruses. J. Virol. 81(20), 11075-11083 (2007). https://doi.org/10.1128/JVI.00594-07 
  30. S. Kolli, X. Meng, X. Wu, D. Shengjuler, C.E. Cameron, Y. Xiang, J. Deng, Structure-function analysis of vaccinia virus H7 protein reveals a novel phosphoinositide binding fold essential for poxvirus replication. J. Virol. 89(4), 2209-2219 (2015). https://doi.org/10.1128/JVI.03073-14 
  31. E.V. Koonin, N. Yutin, Evolution of the large Nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res 103, 167-202 (2019). https://doi.org/10.1016/bs.aivir.2018.09.002 
  32. M. Kozlov, How does monkeypox spread? What scientists know. Nature 608(7924), 655-656 (2022). https://doi.org/10.1038/d41586-022-02178-w 
  33. J. Krijnse-Locker, S. Schleich, D. Rodriguez, B. Goud, E.J. Snijder, G. Griffiths, The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J. Biol. Chem. 271(25), 14950-14958 (1996). https://doi.org/10.1074/jbc.271.25.14950 
  34. S. Lant, Maluquer de Motes, C. Poxvirus Interactions with the Host Ubiquitin System. Pathogens 10(8) (2021). https://doi.org/10.3390/pathogens10081034 
  35. J.H. Luft, Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409-414 (1961). https://doi.org/10.1083/jcb.9.2.409 
  36. A.J. Malkin, A. McPherson, P.D. Gershon, Structure of intracellular mature vaccinia virus visualized by in situ atomic force microscopy. J. Virol. 77(11), 6332-6340 (2003). https://doi.org/10.1128/jvi.77.11.6332-6340.2003 
  37. T. Mekata, Y. Kawato, T. Ito (2021). Complete Genome Sequence of Carp Edema Virus Isolated from Koi Carp. Microbiol. Resour. Announc. 10(16). https://doi.org/10.1128/MRA.00239-21 
  38. H. Meyer, R. Ehmann, G.L. Smith (2020). Smallpox in the Post-Eradication Era. Viruses 12(2). https://doi.org/10.3390/v12020138 
  39. M. Mofjur, I.M.R. Fattah, M.A. Alam, A. Islam, H.C. Ong, S.M.A. Rahman, G. Najaf, S.F. Ahmed, M.A. Uddin, T.M.I. Mahlia, Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic. Sustain. Prod. Consum. 26, 343-359 (2021). https://doi.org/10.1016/j.spc.2020.10.016 
  40. A.R. Mohandas, S. Dales, Involvement of spicules in the formation of vaccinia virus envelopes elucidated by a conditional lethal mutant. Virology 214(2), 494-502 (1995). https://doi.org/10.1006/viro.1995.0060 
  41. C. Morgan, S.A. Ellison, H.M. Rose, D.H. Moore, Structure and development of viruses observed in the electron microscope. II. Vaccinia and fowl pox viruses. J. Exp. Med. 100(3), 301-310 (1954). https://doi.org/10.1084/jem.100.3.301 
  42. B. Moss . Poxviridae, ed. by D.M. Knipe, P.M. Howley. Fields Virology, vol. 2 (Lippincott Williams & Wilkins, 2013)
  43. Moss B., Poxvirus membrane biogenesis. Virology 479-480, 619 (2015). https://doi.org/10.1016/j.virol.2015.02.003 
  44. B. Moss, Origin of the poxviral membrane: A 50-year-old riddle. PLoS Pathog 14(6), e1007002 (2018). https://doi.org/10.1371/journal.ppat.1007002 
  45. B. Moss, E.N. Rosenblum, P.M. Grimley, Assembly of virus particles during mixed infection with wild-type vaccinia and a rifampicin-resistant mutant. Virology 45(1), 135-148 (1971). https://doi.org/10.1016/0042-6822(71)90120-6 
  46. G.E. Palade, A study of fixation for electron microscopy. J. Exp. Med. 95(3), 285-298 (1952). https://doi.org/10.1084/jem.95.3.285 
  47. T.N. Palmore, D.K. Henderson, Adding New Fuel to the Fire: Monkeypox in the Time of COVID-19-Implications for Health Care Personnel. Ann. Intern. Med. 175(8), 1183-1184 (2022). https://doi.org/10.7326/M22-1763 
  48. D. Peters, Morphology of resting vaccinia virus. Nature 178(4548), 1453-1455 (1956). https://doi.org/10.1038/1781453a0 
  49. J.R. Rodriguez, C. Risco, J.L. Carrascosa, M. Esteban, D. Rodriguez, Characterization of early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton protein and a newly identified 15-kilodalton envelope protein. J. Virol. 71(3), 1821-1833 (1997). https://doi.org/10.1128/JVI.71.3.1821-1833.1997 
  50. N. Roos, M. Cyrklaf, S. Cudmore, R. Blasco, J. Krijnse-Locker, G. Grifths, A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. EMBO J. 15(10), 2343-2355 (1996). https://www.ncbi.nlm.nih.gov/pubmed/8665841 
  51. H. Ruska, B.v. Borries, E. Ruska, Die Bedeutung der ubermikroskopie fur die Virusforschung. Archiv fur die gesamte Virusforschung 1(1), 155-169 (1939). https://doi.org/10.1007/BF01243399 
  52. J.F. Sambrook, B.L. Padgett, J.K. Tomkins, Conditional lethal mutants of rabbitpox virus. I. Isolation of host cell-dependent and temperature-dependent mutants. Virology 28(4), 592-599 (1966). https://doi.org/10.1016/0042-6822(66)90244-3 
  53. F.K. Schur, Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging. Curr. Opin. Struct. Biol. 58, 1-9 (2019). https://doi.org/10.1016/j.sbi.2019.03.018 
  54. F.K. Schur, M. Obr, W.J. Hagen, W. Wan, A.J. Jakobi, J.M. Kirkpatrick, C. Sachse, H.G. Krausslich, J.A. Briggs, An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353(6298), 506-508 (2016). https://doi.org/10.1126/science.aaf9620 
  55. B. Sodeik, R.W. Doms, M. Ericsson, G. Hiller, C.E. Machamer, W. van 't Hof, G. van Meer, B. Moss, G. Griffiths, Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J. Cell. Biol. 121(3), 521-541 (1993). https://doi.org/10.1083/jcb.121.3.521 
  56. C. Suarez, S. Hoppe, E. Penard, P. Walther, J. Krijnse-Locker (2017). Vaccinia virus A11 is required for membrane rupture and viral membrane assembly. Cell. Microbiol. 19(10). https://doi.org/10.1111/cmi.12756 
  57. Y. Sugita, H. Matsunami, Y. Kawaoka, T. Noda, M. Wolf, Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 A resolution. Nature 563(7729), 137-140 (2018). https://doi.org/10.1038/s41586-018-0630-0 
  58. C.D. Suraweera, M.G. Hinds, M. Kvansakul (2020). Poxviral strategies to overcome host cell apoptosis. Pathogens, 10(1). https://doi.org/10.3390/pathogens10010006 
  59. P. Szajner, A.S. Weisberg, J. Lebowitz, J. Heuser, B. Moss, External scaffold of spherical immature poxvirus particles is made of protein trimers, forming a honeycomb lattice. J. Cell. Biol. 170(6), 971-981 (2005). https://doi.org/10.1083/jcb.200504026 
  60. S. Tonnemacher, M. Folly-Klan, A.D. Gazi, S. Schafer, E. Penard, R. Eberle, R. Kunz, P. Walther, K. Locker, J, Vaccinia virus H7-protein is required for the organization of the viral scaffold protein into hexamers. Sci. Rep. 12(1), 13007 (2022). https://doi.org/10.1038/s41598-022-16999-2 
  61. B. Unger, J. Mercer, K.A. Boyle, P. Traktman, Biogenesis of the vaccinia virus membrane: genetic and ultrastructural analysis of the contributions of the A14 and A17 proteins. J. Virol. 87(2), 1083-1097 (2013). https://doi.org/10.1128/JVI.02529-12 
  62. W. Wan, M. Clarke, M.J. Norris, L. Kolesnikova, A. Koehler, Z.A. Bornholdt, S. Becker, E.O. Saphire, J.A. Briggs (2020). Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers. Elife 9. https://doi.org/10.7554/eLife.59225 
  63. W. Wan, L. Kolesnikova, M. Clarke, A. Koehler, T. Noda, S. Becker, J.A.G. Briggs, Structure and assembly of the Ebola virus nucleocapsid. Nature 551(7680), 394-397 (2017). https://doi.org/10.1038/nature24490 
  64. M.L. Watson, Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 4(4), 475-478 (1958). https://doi.org/10.1083/jcb.4.4.475 
  65. A.S. Weisberg, L. Maruri-Avidal, H. Bisht, B.T. Hansen, C.L. Schwartz, E.R. Fischer, X. Meng, Y. Xiang, B. Moss, Enigmatic origin of the poxvirus membrane from the endoplasmic reticulum shown by 3D imaging of vaccinia virus assembly mutants. Proc. Natl. Acad. Sci. U S A 114(51), E11001-E11009 (2017). https://doi.org/10.1073/pnas.1716255114 
  66. J.C. Westwood, W.J. Harris, H.T. Zwartouw, D.H. Titmuss, G. Appleyard, studies on the structure of vaccinia virus. J. Gen. Microbiol. 34, 67-78 (1964). https://doi.org/10.1099/00221287-34-1-67 
  67. E.J. Wolfe, D.M. Moore, P.J. Peters, B. Moss, Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. J. Virol. 70(5), 2797-2808 (1996). https://doi.org/10.1128/JVI.70.5.2797-2808.1996 
  68. R.W. Wyckoff, The electron microscopy of vaccinia-diseased tissues. Z. Zellforsch Mikrosk Anat. 38(4), 409-420 (1953). https://doi.org/10.1007/BF00339825 
  69. Y.F. Zhang, B. Moss, Vaccinia virus morphogenesis is interrupted when expression of the gene encoding an 11-kilodalton phosphorylated protein is prevented by the Escherichia coli lac repressor. J. Virol. 65(11), 6101-6110 (1991). https://doi.org/10.1128/JVI.65.11.6101-6110.1991 
  70. G. Zhao, J.R. Perilla, E.L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A.M. Gronenborn, K. Schulten, C. Aiken, P. Zhang, Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497(7451), 643-646 (2013). https://doi.org/10.1038/nature12162