Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (grant number 2022R1A2C1005885) and Pusan National University Research Grant, 2021.
References
- M..W.. Bahar, S..C.. Graham, D..I.. Stuart, J..M.. Grimes, Insights into the evolution of a complex virus from the crystal structure of vaccinia virus D13. Structure 19(7), 1011-1020 (2011). https://doi.org/10.1016/j.str.2011.03.023
- T.A. Bharat, L.R. Castillo Menendez, W.J. Hagen, V. Lux, S. Igonet, M. Schorb, F.K. Schur, H.G. Krausslich, J.A. Briggs, Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc. Natl. Acad. Sci. U S A 111(22), 8233-8238 (2014). https://doi.org/10.1073/pnas.1401455111
- T.A. Bharat, T. Noda, J.D. Riches, V. Kraehling, L. Kolesnikova, S. Becker, Y. Kawaoka, J.A. Briggs, Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proc. Natl. Acad. Sci. U S A 109(11), 4275-4280 (2012). https://doi.org/10.1073/pnas.1120453109
- J. Cairns, The initiation of vaccinia infection. Virology 11, 603-623 (1960). https://doi.org/10.1016/0042-6822(60)90103-3
- F.J. Chichon, M.J. Rodriguez, C. Risco, A. Fraile-Ramos, J.J. Fernandez, M. Esteban, J.L. Carrascosa, Membrane remodelling during vaccinia virus morphogenesis. Biol. Cell. 101(7), 401-414 (2009). https://doi.org/10.1042/BC20080176
- P. Chlanda, M.A. Carbajal, M. Cyrklaf, G. Grifths, J. Krijnse-Locker, Membrane rupture generates single open membrane sheets during vaccinia virus assembly. Cell. Host Microbe 6(1), 81-90 (2009). https://doi.org/10.1016/j.chom.2009.05.021
- R.C. Condit, A. Motyczka, Isolation and preliminary characterization of temperature-sensitive mutants of vaccinia virus. Virology 113(1), 224-241 (1981). https://doi.org/10.1016/0042-6822(81)90150-1
- R.C. Condit, N. Moussatche, P. Traktman, In a nutshell: structure and assembly of the vaccinia virion. Adv. Virus Res. 66, 31-124 (2006). https://doi.org/10.1016/S0065-3527(06)66002-8
- R.C. Condit, E.G. Niles, Orthopoxvirus genetics. Curr. Top. Microbiol. Immunol. 163, 1-39 (1990). https://doi.org/10.1007/978-3-642-75605-4_1
- M. Cyrklaf, A. Linaroudis, M. Boicu, P. Chlanda, W. Baumeister, G. Grifths, J. Krijnse-Locker, Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLoS One 2(5), e420 (2007). https://doi.org/10.1371/journal.pone.0000420
- M. Cyrklaf, C. Risco, J.J. Fernandez, M.V. Jimenez, M. Esteban, W. Baumeister, J.L. Carrascosa, Cryo-electron tomography of vaccinia virus. Proc. Natl. Acad. Sci. U S A 102(8), 2772-2777 (2005). https://doi.org/10.1073/pnas.0409825102
- S. Dales, An electron microscope study of the early association between two mammalian viruses and their hosts. J. Cell. Biol. 13, 303-322 (1962). https://doi.org/10.1083/jcb.13.2.303
- S. Dales, V. Milovanovitch, B.G. Pogo, S.B. Weintraub, T. Huima, S. Wilton, G. McFadden, Biogenesis of vaccinia: isolation of conditional lethal mutants and electron microscopic characterization of their phenotypically expressed defects. Virology 84(2), 403-428 (1978). https://doi.org/10.1016/0042-6822(78)90258-1
- S. Dales, E.H. Mosbach, Vaccinia as a model for membrane biogenesis. Virology 35(4), 564-583 (1968). https://doi.org/10.1016/0042-6822(68)90286-9
- S. Dales, B.G. Pogo, Biology of poxviruses. Virol. Monogr. 18, 1-109 (1981). https://doi.org/10.1007/978-3-7091-8625-1
- S. Dales, L. Siminovitch, The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy. J. Biophys. Biochem. Cytol. 10, 475-503 (1961). https://doi.org/10.1083/jcb.10.4.475
- I.K. Damon, Poxviruses, ed. by D.M. Knipe, P.M. Howley. Fields Virology, vol. 2, 6th edn., (Lippincott Williams & Wilkins, 2013, Philadelphia, PA, USA)
- J. Dubochet, M. Adrian, K. Richter, J. Garces, R. Wittek, Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy. J. Virol. 68(3), 1935-1941 (1994). https://doi.org/10.1128/JVI.68.3.1935-1941.1994
- J. Dubochet, J. Lepault, R. Freeman, J.A. Berriman, J.C. Homo, Electron-Microscopy of Frozen Water and Aqueous-Solutions. J. Microsc. 128(Dec), 219-237 (1982). https://doi.org/10.1111/j.1365-2818.1982.tb04625.x
- D. Garriga, S. Headey, C. Accurso, M. Gunzburg, M. Scanlon, F. Coulibaly, Structural basis for the inhibition of poxvirus assembly by the antibiotic rifampicin. Proc. Natl. Acad. Sci. U S A 115(33), 8424-8429 (2018). https://doi.org/10.1073/pnas.1810398115
- G. Grifths, R. Wepf, T. Wendt, J.K. Locker, M. Cyrklaf, N. Roos, Structure and assembly of intracellular mature vaccinia virus: isolated-particle analysis. J. Virol. 75(22), 11034-11055 (2001). https://doi.org/10.1128/JVI.75.22.11034-11055.2001
- C. Grimm, J. Bartuli, B. Boettcher, A.A. Szalay, U. Fischer, Structural basis of the complete poxvirus transcription initiation process. Nat. Struct. Mol. Biol. 28(10), 779-788 (2021). https://doi.org/10.1038/s41594-021-00655-w
- C. Grimm, H.S. Hillen, K. Bedenk, J. Bartuli, S. Neyer, Q. Zhang, A. Huttenhofer, M. Erlacher, C. Dienemann, A. Schlosser, H. Urlaub, B. Bottcher, A.A. Szalay, P. Cramer, U. Fischer, Structural basis of poxvirus transcription: vaccinia RNA polymerase complexes. Cell 179(7), 1537-1550 e1519 (2019). https://doi.org/10.1016/j.cell.2019.11.024
- T. Gunther, L. Haas, M. Alawi, P. Wohlsein, J. Marks, A. Grundhof, P. Becher, N. Fischer, Recovery of the first full-length genome sequence of a parapoxvirus directly from a clinical sample. Sci. Rep. 7(1), 3734 (2017). https://doi.org/10.1038/s41598-017-03997-y
- J. Heuser, Deep-etch EM reveals that the early poxvirus envelope is a single membrane bilayer stabilized by a geodetic "honeycomb" surface coat. J. Cell. Biol. 169(2), 269-283 (2005). https://doi.org/10.1083/jcb.200412169
- H.E. Huxley, Electron microscope studies on the structure of natural and synthetic protein flaments from striated muscle. J. Mol. Biol. 7, 281-308 (1963). https://doi.org/10.1016/s0022-2836(63)80008-x
- J. Hyun, H. Matsunami, T.G. Kim, M. Wolf, Assembly mechanism of the pleomorphic immature poxvirus scaffold. Nat. Commun. 13(1), 1704 (2022). https://doi.org/10.1038/s41467-022-29305-5
- J.K. Hyun, C. Accurso, M. Hijnen, P. Schult, A. Pettikiriarachchi, A.K. Mitra, F. Coulibaly, Membrane remodeling by the double-barrel scaffolding protein of poxvirus. PLoS Pathog 7(9), e1002239 (2011). https://doi.org/10.1371/journal.ppat.1002239
- J.K. Hyun, F. Coulibaly, A.P. Turner, E.N. Baker, A.A. Mercer, A.K. Mitra, The structure of a putative scaffolding protein of immature poxvirus particles as determined by electron microscopy suggests similarity with capsid proteins of large icosahedral DNA viruses. J. Virol. 81(20), 11075-11083 (2007). https://doi.org/10.1128/JVI.00594-07
- S. Kolli, X. Meng, X. Wu, D. Shengjuler, C.E. Cameron, Y. Xiang, J. Deng, Structure-function analysis of vaccinia virus H7 protein reveals a novel phosphoinositide binding fold essential for poxvirus replication. J. Virol. 89(4), 2209-2219 (2015). https://doi.org/10.1128/JVI.03073-14
- E.V. Koonin, N. Yutin, Evolution of the large Nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv. Virus Res 103, 167-202 (2019). https://doi.org/10.1016/bs.aivir.2018.09.002
- M. Kozlov, How does monkeypox spread? What scientists know. Nature 608(7924), 655-656 (2022). https://doi.org/10.1038/d41586-022-02178-w
- J. Krijnse-Locker, S. Schleich, D. Rodriguez, B. Goud, E.J. Snijder, G. Griffiths, The role of a 21-kDa viral membrane protein in the assembly of vaccinia virus from the intermediate compartment. J. Biol. Chem. 271(25), 14950-14958 (1996). https://doi.org/10.1074/jbc.271.25.14950
- S. Lant, Maluquer de Motes, C. Poxvirus Interactions with the Host Ubiquitin System. Pathogens 10(8) (2021). https://doi.org/10.3390/pathogens10081034
- J.H. Luft, Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409-414 (1961). https://doi.org/10.1083/jcb.9.2.409
- A.J. Malkin, A. McPherson, P.D. Gershon, Structure of intracellular mature vaccinia virus visualized by in situ atomic force microscopy. J. Virol. 77(11), 6332-6340 (2003). https://doi.org/10.1128/jvi.77.11.6332-6340.2003
- T. Mekata, Y. Kawato, T. Ito (2021). Complete Genome Sequence of Carp Edema Virus Isolated from Koi Carp. Microbiol. Resour. Announc. 10(16). https://doi.org/10.1128/MRA.00239-21
- H. Meyer, R. Ehmann, G.L. Smith (2020). Smallpox in the Post-Eradication Era. Viruses 12(2). https://doi.org/10.3390/v12020138
- M. Mofjur, I.M.R. Fattah, M.A. Alam, A. Islam, H.C. Ong, S.M.A. Rahman, G. Najaf, S.F. Ahmed, M.A. Uddin, T.M.I. Mahlia, Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic. Sustain. Prod. Consum. 26, 343-359 (2021). https://doi.org/10.1016/j.spc.2020.10.016
- A.R. Mohandas, S. Dales, Involvement of spicules in the formation of vaccinia virus envelopes elucidated by a conditional lethal mutant. Virology 214(2), 494-502 (1995). https://doi.org/10.1006/viro.1995.0060
- C. Morgan, S.A. Ellison, H.M. Rose, D.H. Moore, Structure and development of viruses observed in the electron microscope. II. Vaccinia and fowl pox viruses. J. Exp. Med. 100(3), 301-310 (1954). https://doi.org/10.1084/jem.100.3.301
- B. Moss . Poxviridae, ed. by D.M. Knipe, P.M. Howley. Fields Virology, vol. 2 (Lippincott Williams & Wilkins, 2013)
- Moss B., Poxvirus membrane biogenesis. Virology 479-480, 619 (2015). https://doi.org/10.1016/j.virol.2015.02.003
- B. Moss, Origin of the poxviral membrane: A 50-year-old riddle. PLoS Pathog 14(6), e1007002 (2018). https://doi.org/10.1371/journal.ppat.1007002
- B. Moss, E.N. Rosenblum, P.M. Grimley, Assembly of virus particles during mixed infection with wild-type vaccinia and a rifampicin-resistant mutant. Virology 45(1), 135-148 (1971). https://doi.org/10.1016/0042-6822(71)90120-6
- G.E. Palade, A study of fixation for electron microscopy. J. Exp. Med. 95(3), 285-298 (1952). https://doi.org/10.1084/jem.95.3.285
- T.N. Palmore, D.K. Henderson, Adding New Fuel to the Fire: Monkeypox in the Time of COVID-19-Implications for Health Care Personnel. Ann. Intern. Med. 175(8), 1183-1184 (2022). https://doi.org/10.7326/M22-1763
- D. Peters, Morphology of resting vaccinia virus. Nature 178(4548), 1453-1455 (1956). https://doi.org/10.1038/1781453a0
- J.R. Rodriguez, C. Risco, J.L. Carrascosa, M. Esteban, D. Rodriguez, Characterization of early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton protein and a newly identified 15-kilodalton envelope protein. J. Virol. 71(3), 1821-1833 (1997). https://doi.org/10.1128/JVI.71.3.1821-1833.1997
- N. Roos, M. Cyrklaf, S. Cudmore, R. Blasco, J. Krijnse-Locker, G. Grifths, A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. EMBO J. 15(10), 2343-2355 (1996). https://www.ncbi.nlm.nih.gov/pubmed/8665841
- H. Ruska, B.v. Borries, E. Ruska, Die Bedeutung der ubermikroskopie fur die Virusforschung. Archiv fur die gesamte Virusforschung 1(1), 155-169 (1939). https://doi.org/10.1007/BF01243399
- J.F. Sambrook, B.L. Padgett, J.K. Tomkins, Conditional lethal mutants of rabbitpox virus. I. Isolation of host cell-dependent and temperature-dependent mutants. Virology 28(4), 592-599 (1966). https://doi.org/10.1016/0042-6822(66)90244-3
- F.K. Schur, Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging. Curr. Opin. Struct. Biol. 58, 1-9 (2019). https://doi.org/10.1016/j.sbi.2019.03.018
- F.K. Schur, M. Obr, W.J. Hagen, W. Wan, A.J. Jakobi, J.M. Kirkpatrick, C. Sachse, H.G. Krausslich, J.A. Briggs, An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353(6298), 506-508 (2016). https://doi.org/10.1126/science.aaf9620
- B. Sodeik, R.W. Doms, M. Ericsson, G. Hiller, C.E. Machamer, W. van 't Hof, G. van Meer, B. Moss, G. Griffiths, Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J. Cell. Biol. 121(3), 521-541 (1993). https://doi.org/10.1083/jcb.121.3.521
- C. Suarez, S. Hoppe, E. Penard, P. Walther, J. Krijnse-Locker (2017). Vaccinia virus A11 is required for membrane rupture and viral membrane assembly. Cell. Microbiol. 19(10). https://doi.org/10.1111/cmi.12756
- Y. Sugita, H. Matsunami, Y. Kawaoka, T. Noda, M. Wolf, Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 A resolution. Nature 563(7729), 137-140 (2018). https://doi.org/10.1038/s41586-018-0630-0
- C.D. Suraweera, M.G. Hinds, M. Kvansakul (2020). Poxviral strategies to overcome host cell apoptosis. Pathogens, 10(1). https://doi.org/10.3390/pathogens10010006
- P. Szajner, A.S. Weisberg, J. Lebowitz, J. Heuser, B. Moss, External scaffold of spherical immature poxvirus particles is made of protein trimers, forming a honeycomb lattice. J. Cell. Biol. 170(6), 971-981 (2005). https://doi.org/10.1083/jcb.200504026
- S. Tonnemacher, M. Folly-Klan, A.D. Gazi, S. Schafer, E. Penard, R. Eberle, R. Kunz, P. Walther, K. Locker, J, Vaccinia virus H7-protein is required for the organization of the viral scaffold protein into hexamers. Sci. Rep. 12(1), 13007 (2022). https://doi.org/10.1038/s41598-022-16999-2
- B. Unger, J. Mercer, K.A. Boyle, P. Traktman, Biogenesis of the vaccinia virus membrane: genetic and ultrastructural analysis of the contributions of the A14 and A17 proteins. J. Virol. 87(2), 1083-1097 (2013). https://doi.org/10.1128/JVI.02529-12
- W. Wan, M. Clarke, M.J. Norris, L. Kolesnikova, A. Koehler, Z.A. Bornholdt, S. Becker, E.O. Saphire, J.A. Briggs (2020). Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers. Elife 9. https://doi.org/10.7554/eLife.59225
- W. Wan, L. Kolesnikova, M. Clarke, A. Koehler, T. Noda, S. Becker, J.A.G. Briggs, Structure and assembly of the Ebola virus nucleocapsid. Nature 551(7680), 394-397 (2017). https://doi.org/10.1038/nature24490
- M.L. Watson, Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 4(4), 475-478 (1958). https://doi.org/10.1083/jcb.4.4.475
- A.S. Weisberg, L. Maruri-Avidal, H. Bisht, B.T. Hansen, C.L. Schwartz, E.R. Fischer, X. Meng, Y. Xiang, B. Moss, Enigmatic origin of the poxvirus membrane from the endoplasmic reticulum shown by 3D imaging of vaccinia virus assembly mutants. Proc. Natl. Acad. Sci. U S A 114(51), E11001-E11009 (2017). https://doi.org/10.1073/pnas.1716255114
- J.C. Westwood, W.J. Harris, H.T. Zwartouw, D.H. Titmuss, G. Appleyard, studies on the structure of vaccinia virus. J. Gen. Microbiol. 34, 67-78 (1964). https://doi.org/10.1099/00221287-34-1-67
- E.J. Wolfe, D.M. Moore, P.J. Peters, B. Moss, Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. J. Virol. 70(5), 2797-2808 (1996). https://doi.org/10.1128/JVI.70.5.2797-2808.1996
- R.W. Wyckoff, The electron microscopy of vaccinia-diseased tissues. Z. Zellforsch Mikrosk Anat. 38(4), 409-420 (1953). https://doi.org/10.1007/BF00339825
- Y.F. Zhang, B. Moss, Vaccinia virus morphogenesis is interrupted when expression of the gene encoding an 11-kilodalton phosphorylated protein is prevented by the Escherichia coli lac repressor. J. Virol. 65(11), 6101-6110 (1991). https://doi.org/10.1128/JVI.65.11.6101-6110.1991
- G. Zhao, J.R. Perilla, E.L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A.M. Gronenborn, K. Schulten, C. Aiken, P. Zhang, Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497(7451), 643-646 (2013). https://doi.org/10.1038/nature12162