• Title/Summary/Keyword: molding stability

Search Result 118, Processing Time 0.035 seconds

Flammability and Thermal Stabilities of Heat Transfer Oils (열매체유의 인화성과 열안정성)

  • Lee, Keun-Won;Lee, Jung-Suk;Choi, Yi-Rac
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.82-87
    • /
    • 2011
  • Heat transfer oils are used in applications such as heating systems of chemical plant, refinery heat exchange systems, gas plant process, injection molding systems, and pulp and paper processing. These oils are extremely stable and resistance to thermal and oxidative degradation. In the event of a spill or accidental release of heat transfer oils, it can be ignite easily when there is an ignition source. This paper discusses the flammability and thermal stabilities of new and used oils. The flammability of the oils are assessed by measuring changes in flash point and auto ignition temperature. The thermal stability of oils are evaluated by the thermal screening unit ($TS^u$) and the differential scanning calorimeter (DSC). From the experimental results, it is suggested to give fire hazard characteristics to safe precautions for the proper use and treatment of heat transfer oils.

Friction and Wear Properties of Fiber Reinforced Composite (섬유보강 복합재의 마찰 및 마모특성)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok;Hong, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.733-740
    • /
    • 1994
  • Oxidized-PAN fiber reinforced composite(OFRP), carbon fiber reinforced composite(CFRP), aramid fiber reinforced composite(AFRP), and glass fiber reinforced composite(GFRP) were fabricated with phenolic resin matrix by hot press molding. We tested the friction coefficient and wear rate varying with fiber weight fraction and observed the effect of fibers according to characteristics of individual reinforcement. When the amount of aramid fiber was 45wt%, average friction coefficient was maximum value of 0.353~0.383, where as, when the amount of pitch based carbon fiber was 45wt%, average friction coefficient was the lowest value of 0.164~0.190. The wear rate of AFRP and CFRP was low, but that of GFRP and OFRP increases drastically in the case of increasing of fiber weight fraction. Wear diagram of OFRP was unstable, but that of CFRP and AFRP was a bit stable. Through very unstable diagram of GFRP, we found that friction stability of GFRP was the lowest.

  • PDF

Processing and Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Poly(butylene succinate) Blends (폴리유산/폴리부틸렌숙시네이트 블랜드의 가공 및 기계적, 열적, 형태학적 특성)

  • Kim, Dae Keun;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • In the present work, PLA/PBS blends with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) at different contents were processed by using a twin-screw extruder and an injection molding machine, and then their mechanical, thermal and morphological properties were investigated. The mechanical properties such as flexural strength, flexural modulus, tensile strength and tensile modulus and thermal properties such as melting behavior, dynamic mechanical thermal properties and thermal stability significantly depended on the contents of PLA and PBS. However, the heat deflection temperature of the blends was not significantly influenced by the contents of PLA and PBS. Also, the fracture surfaces of PLA/PBS blends were changed from a brittle pattern to a ductile pattern with increasing the PBS contents.

Neutron-irradiated effect on the thermoelectric properties of Bi2Te3-based thermoelectric leg

  • Huanyu Zhao;Kai Liu;Zhiheng Xu;Yunpeng Liu;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3080-3087
    • /
    • 2023
  • Thermoelectric (TE) materials working in radioisotope thermoelectric generators are irradiated by neutrons throughout its service; thus, investigating the neutron irradiation stability of TE devices is necessary. Herein, the influence of neutron irradiation with fluences of 4.56 × 1010 and 1 × 1013 n/cm2 by pulsed neutron reactor on the electrical and thermal transport properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thermoelectric alloys prepared by cold-pressing and molding is investigated. After neutron irradiation, the properties of thermoelectric materials fluctuate, which is related to the material type and irradiation fluence. Different from p-type thermoelectric materials, neutron irradiation has a positive effect on n-type Bi2Te2.7Se0.3 materials. This result might be due to the increase of carrier mobility and the optimization of electrical conductivity. Afterward, the effects of p-type and n-type TE devices with different treatments on the output performance of TE devices are further discussed. The positive and negative effects caused by irradiation can cancel each other to a certain extent. For TE devices paired with p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric legs, the generated power and conversion efficiency are stable after neutron irradiation.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

Microfluidic System for the Measurement of Cupric Ion Concentration using Bilayer Lipid Membrane on Silver Surface (은 표면의 이중층 지질막에 의한 구리 이온 농도 측정용 마이크로플루이딕 시스템)

  • Jeong, Beum Seung;Kim, Do Hyun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • A microfluidic system has been developed using biomaterial for the measurement of cupric ion concentration. The cell-membrane-mimicking bilayer lipid membrane(BLM)-coated silver electrode was used for the sensing of cupric ion concentration. The silver-supported BLM could increase its stability. A silver-supported bilayer lipid membrane(s-BLM) was easily obtained using its self-assembling characteristics by immersing silver wire into lipid(phosphatidylcholine; PC) solution and then dipping into aqueous KCl solution. These s-BLMs were used to determine the relationship between $Cu^{2+}$ concentration and current crossing s-BLM. Their relationship showed high linearity and reproducibility. The calibration curve was constructed to express the relationship between $Cu^{2+}$ concentration and current in the $Cu^{2+}$ concentration range of 10 and $130{\mu}M$. This calibration curve was used to measure $Cu^{2+}$ concentration in an unknown sample. Microfluidic system with s-BLM was made of PDMS(polydimethyl siloxane) using typical soft photolithography and molding technique. This integrated system has various functions such as activation of the silver surface without cutting silver wire, coating of BLM on silver surface, injection of KCl buffer solution, injection of $Cu^{2+}$ sample and measurement of $Cu^{2+}$ concentration in the sample.

Numerical Analysis for Thermal-deformation Improvement in TSOP(Thin Small Outline Package) by Anti-deflection Adhesives (TSOP(Thin Small Outline Package) 열변형 개선을 위한 전산모사 분석)

  • Kim, Sang-Woo;Lee, Hai-Joong;Lee, Hyo-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.31-35
    • /
    • 2013
  • TSOP(Thin Small Outline Package) is the IC package using lead frame, which is the type of low cost package for white electronics, auto mobile, desktop PC, and so on. Its performance is not excellent compared to BGA or flip-chip CSP, but it has been used mostly because of low price of TSOP package. However, it has been issued in TSOP package that thermal deflection of lead frame occurs frequently during molding process and Au wire between semiconductor die and pad is debonded. It has been required to solve this problem through substituting materials with low CTE and improving structure of lead frame. We focused on developing the lead frame structure having thermal stability, which was carried out by numerical analysis in this study. Thermal deflection of lead frame in TSOP package was simulated with positions of anti-deflection adhesives, which was ranging 198 um~366 um from semiconductor die. It was definitely understood that thermal deflection of TSOP package with anti-deflection adhesives was improved as 30.738 um in the case of inside(198 um), which was compared to that of the conventional TSOP package. This result is caused by that the anti-deflection adhesives is contributed to restrict thermal expansion of lead frame. Therefore, it is expected that the anti-deflection adhesives can be applied to lead frame packages and enhance their thermal deflection without any change of substitutive materials with low CTE.

Prosthetic rehabilitation by double-processing technique for edentulous patient with soft palate defect after maxillectomy: A case report (연구개를 포함한 상악골 절제술을 받은 완전 무치악 환자에서 이중 온성법으로 제작한 구개 폐색장치를 통한 보철수복: 증례 보고)

  • Park, Jin-Yong;Wang, Yuan-Kun;Song, Kwang-Yeob;Park, Ju-Mi;Lee, Jung-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.356-363
    • /
    • 2019
  • A patient who went through maxillectomy can have soft palate defects including oronasal fistulas and suffer from dysphagia and dysarthria due to velopharyngeal insufficiency. This defect causes the food to enter nasal cavity and creates hypernasal sound which debilitates a quality of life. An obturator can rehabilitate the substantial oral tissue defects. The maxillary obturator separates the nasopharynx from the oropharynx during speech and deglutition by closing of the defect. For edentulous obturator patient, it is difficult to obtain proper retention due to reduced peripheral sealing. Therefore, the contours of the defects must be used to maximize the retention, stability, and support. Hollow type obturator can improve physiologic function by reducing weight than the traditional obturator. This case report describes a patient with hemi-maxillectomy who recovers mastication, speech, deglutition, and appearance with a maxillary obturator using physiological border molding of the velopharyngeal area and double-processing method.