• Title/Summary/Keyword: molding Analysis

Search Result 886, Processing Time 0.029 seconds

Numerical analysis on foam reaction injection molding of polyurethane, part B: Parametric study and real application

  • Han, HyukSu;Nam, Hyun Nam;Eun, Youngkee;Lee, Su Yeon;Nam, Jeongho;Ryu, Jeong Ho;Lee, Sung Yoon;Kim, Jungin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.258-262
    • /
    • 2016
  • Foam reaction injection molding (FRIM) is a widely used process for manufacturing polyurethane foam with complex shapes. The modified theoretical model for polyurethane foam forming reaction during FRIM process was established in our previous work. In this study, using the modified model, parametric study for FRIM process was performed in order to optimize experimental conditions of FRIM process such as initial temperature of mold, thickness of mold, and injection amount of polymerizing mixture. In addition, we applied the modified model to real application of refrigerator cabinet to determine optimal manufacturing conditions for polyurethane FRIM process.

The property of WC(Co 0.5%) Ultra precision turning for Glass Lens molding (Glass Lens 성형용 초경합금(Co 0.5%)의 초정밀 절삭특성)

  • Kim, Min-Jae;Lee, Jun-Key;Kim, Tae-Kyoung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.41-41
    • /
    • 2010
  • In this research, to study tungsten carbide alloy(Co 0.5%) ultra precision turning possibility that is used Glass Molding Press(GMP) using conventional (Rake angle $-25^{\circ}$) single crystal diamond bite observed machining surface condition, surface roughness($R_a$), diamond bite cutting edge after tungsten carbide alloy ultra precision turning. Suggested and designed optimum chamfer bite shape to suggest ultra precision optimum bite using Finite Element Analysis(FEM). After machining tungsten carbide alloy ultra precision turning using optimum chamfer bite and comparing with conventional bite machine result and studied optimum chamfer bite design inspection and also tungsten carbide ultra precision turning possibility for high temperature compression glass lens molding.

  • PDF

Optimization of Processing Conditions in Injection Molding Using Genetic Algorithm (유전알고리듬을 이용한 사출성형 공정조건 최적화)

  • Choe, Won-Jun;Sin, Hyo-Cheol;Gwak, Sin-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2543-2551
    • /
    • 2000
  • Precision injection molding is an important technology for improving productivity and lowering costs in the fields of medical components, lenses and electrical connectors. The quality of injection molded parts is affected by various processing conditions such as filling time and packing pressure profile. It is difficult to consider all the variables at the same time for prediction of the quality. In this study, the genetic algorithm was used to obtain the optimal processing conditions for minimizing the volumetric shrinkage of molded parts. For a higher convergence rate, the method of design of experiments was used to analyze the relationship between processing conditions and volumetric shrinkage of molded parts, which served as analysis tool for the capability of searching optimal processing conditions but also greatly reduces the calculation time by utilizing the information of searching area. As a practical example, compact disks that require micron-level precision were chosen for the study.

Effect of Design Parameters and Molding Temperature on Polymethyl Methacrylate Lens Warp (PMMA Lens의 변형에 미치는 설계변수와 금형온도의 영향)

  • Lee, Seon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.109-116
    • /
    • 2016
  • Polymethyl methacrylate is commonly used in the outer lens of automotive rear lamps. However, if the lens warps above the allowable limit, it may lead to faulty connection with the housing, and failure of the assembly. This study investigated the effects of gate diameter and cooling line distance in the mold design for automotive outer lens. The optimal gate diameter and cooling line distance to minimize the warp of the outer lens were derived as 3.0 mm and 50-60 mm respectively, and the cooling temperature to minimize warp was shown to be $60-80^{\circ}C$ (mold surface temperature $48-67^{\circ}C$). A higher cooling temperature may somewhat mitigate the warp, but is undesirable because it may cause injection molding problems, such as sinks. A mold was constructed matching the optimal design and the produced lens properties, particularly the degree of warp, were comparable with the CAE predictions.

Cure Characteristics of Naphthalene Type Epoxy Resins for SEMC (Sheet Epoxy Molding Compound) for WLP (Wafer Level Package) Application (WLP(Wafer Level Package)적용을 위한 SEMC(Sheet Epoxy Molding Compounds)용 Naphthalene Type Epoxy 수지의 경화특성연구)

  • Kim, Whan Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The cure characteristics of three kinds of naphthalene type epoxy resins(NET-OH, NET-MA, NET-Epoxy) with a 2-methyl imidazole(2MI) catalyst were investigated for preparing sheet epoxy molding compound(SEMC) for wafer level package(WLP) applications, comparing with diglycidyl ether of bisphenol-A(DGEBA) and 1,6-naphthalenediol diglycidyl ether(NE-16) epoxy resin. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The NET-OH epoxy resin represented an n-th order cure mechanism as like NE-16 and DGEBA epoxy resins, however, the NET-MA and NET-Epoxy resins showed an autocatalytic cure mechanism. The NET-OH and NET-Epoxy resins showed higher cure conversion rates than DGEBA and NE-16 epoxy resins, however, the lowest cure conversion rates can be seen in the NET-MA epoxy resin. Although the NETEpoxy and NET-MA epoxy resins represented higher cure reaction conversions comparing with DGEBA and NE-16 resins, the NET-OH showed the lowest cure reaction conversions. It can be figured out by kinetic parameter analysis that the lowest cure conversion rates of the NET-MA epoxy resin are caused by lower collision frequency factor, and the lowest cure reaction conversions of the NET-OH are due to the earlier network structures formation according to lowest critical cure conversion.

An Experimental Study of Injection Molding for Multi-beam Sensing Lens Using The Change of Gate Geometry (금형 게이트 크기 변화에 따른 멀티빔 센서용 렌즈 사출성형성 향상에 관한 연구)

  • Cho, S.W.;Kim, J.S.;Yoon, K.H.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.333-338
    • /
    • 2011
  • Rapidly developing IT technologies in recent years have raised the demands for high-precision optical lenses used for sensors, digital cameras, cell phones and optical storage media. Many techniques are required to manufacturing high-precision optical lenses, including multi-beam sensing lenses investigated in the current study. In the case of injection molding for thick lenses, a shrinkage phenomenon often occurs during the process. This shrinkage is known to be the main reason for the lower optical quality of the lenses. In the present work, a CAE analysis was conducted simultaneously with experiments to understand and minimize this phenomenon. In particular, the sectional area of a gate was varied in order to understand the effects of packing and cooling processes on the final shrinkage pattern. As a result of this study, it was demonstrated that a dramatic reduction of the shrinkage could be obtained by increasing the width of the gate.

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.

실험계획법을 이용한 탄소섬유/페놀수지의 강화 cycle연구

  • Ha, Heon-Seung;Lee, Jin-Yong;Jo, Dong-Hwan;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.514-520
    • /
    • 1993
  • In this paper the cure cycle of carbon fiber/phenolic resin was investigated by the Taguchi Method in an experimental design. Experiments were systematically performed using $L_{18}(2^1 \times 3_7)$ orthorgonal array table of the experimental design. In the experimental design, eight compression molding parameters (heating rate, pressing temperature, pressing rate, molding pressure, curing temperature, dwell time at curing temperature, cooling rate and degassing) were considered and the effects of the parameters on the flexural strength and the apparent porosity of carbon fiber/phenolic composites were investigated. The analysis of variance for the experimental results indicated that molding pressure and curing temperature are the most significant parmeters in the flexural strength and the apparent porosity of carbon fiber/phenolic resin composites, respectively.

  • PDF

Mechanical and Antibacterial Properties of Copper-added Austenitic Stainless Steel (304L) by MIM

  • Nishiyabu, Kazuaki;Masai, Yoshikaze;Ishida, Masashi;Tanaka, Shigeo
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2002
  • For the austenitic stainless steel (304L) manufactured by metal injection molding(MIM), the effects of copper content and sintering temperature on the mechanical properties, antibacterial activities, corrosion resistance, and electric resistances were investigated. The specimens were prepared by injection molding of the premixed powders of water-atomized 304 L and Cu with poly-acetyl binders. The green compacts were prepared with various copper contents from 0 to 10 wt.% Cu, which were debound thermally at 873 K for 7.2 ks in $N_2$gas atmosphere and subsequently sintered at various temperatures from 1323 K to 1623 K for 7.2 ks in Ar gas atmosphere. The relative density and tensile strength of the sintered compacts showed the minimum values at 5 and 8 wt.% Cu, respectively. Both the relative density and the tensile strength of the specimen with 10 wt.% Cu sintered at 1373 K showed the highest values, higher than those of copper-free specimen. Antibacterial activities investigated by the plastic film contact printing method for bacilli and the quantitative analysis of copper ion dissolved in water increased as the increase of the copper content to stainless steels. It was also verified by the measurement of pitting potential that the copper addition in 304 L could improve the corrosion resistance. Furthermore the electric conductivity increased with the increase of copper content.

Flow Phenomena in Micro-Channel Filling Process (I) - Flow Visualization Experiment - (마이크로 채널 충전 과정의 유동 현상(I) - 유동 가시화 실험 -)

  • Kim, Dong-Sung;Lee, Kwang-Cheol;Kwon, Tai-Hun;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1982-1988
    • /
    • 2002
  • Micro-injection molding and microfluidic devices with the help of MEMS technologies including the LIGA process are expected to play important roles in micro-system industries, in particular the bio-application industry, in the near future. Understanding fluid flows in micro-channels is important since micro-channels are typical geometry in various microfluidic devices and mold inserts for micro-injection molding. In the present study, Part 1, an experimental investigation has been carried out to understand the detailed flow phenomena in micro-channel filling process. Three sets of micro-channels of different thickness (40um,30um and 2011m) were fabricated using SU-8 on silicon wafer substrate. And a flow visualization system was developed to observe the filling flow into the micro-channels. Experimental flow observations are extensively made to find the effects of pressure, inertia force, viscous force and surface tension. A dimensional analysis for experimental results was carried out and several relationships A dimensionless parameters are obtained.