• Title/Summary/Keyword: mold-filling

Search Result 348, Processing Time 0.027 seconds

Occurrence of Mold Growth due to Moisture Migration in a Composite Chocolate Product (복합 초콜렛제품에서의 수분이동에 의한 곰팡이의 발생)

  • Kim, Sang-Yong;Noh, Bong-Soo;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.1033-1037
    • /
    • 1997
  • The occurrence of mold growth due to moisture migration in a composite chocolate product filled with marshmallow during storage was investigated. The correlation between water activities and water contents of dark chocolate coating and filling marshmallow at $25^{\circ}C$ was well applied to Kuhn's equation. The marshmallow was found to be more hydrogroscopic than the chocolate. Since the moisture transferred from marshmallow to chocolate, the water activity of marshmallow decreased from 0.88 to 0.80 and that of chocolate increased from 0.22 to 0.76 at $25^{\circ}C$ for 30 days. This water activity, 0.76, can allow mold growth. A mold was isolated on the surface of a composite chocolate product at $25^{\circ}C$after 3 months and then was identified as Aspergillus repens. Growth experiments at varied water activities with A. repens were performed. When the water activity in a chocolate solid medium increased from 0.73 to 0.93, the occurrence time of mold growth decreased from 62 to 15 days. These results suggested that the occurrence of mold growth was due to the increased water activity of the chocolate resulting from the moisture transfer from filling marshmallow dark to chocolate coating.

  • PDF

Analysis of Mold Filling Associated with Unsteady Flow in Injection Molding Process (사출성형 공정에서 비정상 흐름에 의한 Mold Filling 현상)

  • 류민영;신희철;배유리
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.545-555
    • /
    • 2000
  • Surface defects in injection molded parts due to the unsteady flow are related to the dimension of gate, operational conditions and rheological properties of polymer. In this study we have examined surface defects in injection molding for PC, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to not on]v die swell but retardation of die swell. Large die swell eliminates jetting however the large retardation of die swell stimulates jetting. Reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and surface defects. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

Development of a Simultaneous CAE System for the Application to Large Steel Castings (대형주강품에 대한 CAE 시스템 개발 연구)

  • Lee, Young-Chul;Lee, Doo-Ho;Kim, Jong-Ki;So, Chan-Young;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.465-471
    • /
    • 1997
  • An integrated computer program consisting of a pre-processor, main solver, and post-processor was developed for the design of large steel castings. The pre-processor, based on the AutoCAD, enables the user to produce approval drawings, casting design drawings and mesh diagrams in sequence using a personal computer. In the main solver, two numerical models were employed; one models the fluid flow during mold filling, and the other models the heat transfer and solidification. The post-processor can be used to present simulation results such as flow pattern, mold filling sequences, solidification times, temperature gradients and location of shrinkage defects by color graphics. In order to validate the applicability of the present integrated program, a series of experiments on simple-shaped steel castings were carried out. After the validation of the present model, it was applied to the casting design of the large steel anchor of an SC42 alloy. Various solidification parameters such as a temperature distribution and a solidification time in the casting and the mold were compared with those obtained experimentally. Simulated results predicting shrinkage defects were in good agreement with those obtained experimentally. It was found that the present method can be successfully applied to the quantitative casting design for complex-shaped large steel castings.

  • PDF

Mold Filling Analysis and Post-deformation Analysis of Injection-molded Aspheric Lenses for a Mobile Phone Camera Module (휴대폰 카메라용 비구면렌즈의 성형해석 및 후변형해석)

  • Park, Keun;Eom, Hyeju;Ahn, Jong-Ho
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.12-17
    • /
    • 2012
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, a full-3d simulation based on solid elements has been reported as a reliable approach. The present work covers three-dimensional injection molding simulation and relevant deformation analysis of an injection molded plastic lens based on 3d solid elements. Numerical analyses have been applied to the injection molding processes of three aspheric lenses for an image sensing module of a mobile phone. The reliability of the proposed approach has been verified in comparison with the experimental results.

  • PDF

A Study on Optimal Solution of Short Shot Using Fuzzy Logic Based Neural Network(FNN) (퍼지-신경망을 이용한 미성형 사출제품의 최적해결에 관한 연구)

  • Kang, Seong-Nam;Huh, Yong-Jeong;Cho, Hyun-Chan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.83-86
    • /
    • 2001
  • In injection molding, short shot is one of the frequent and fatal defects. Experts of injection molding usually adjust process conditions such as injection time, mold temperature, and melt temperature because it is the most economic way in time and cost. However it is a difficult task to find appropriate process conditions for troubleshooting of short shot as injection molding process is a highly nonlinear system and process conditions are coupled. In this paper, a fuzzy neural network(FNN) has been applied to injection molding process to shorten troubleshooting time of short shot. Based on melt temperature and fill time, a reasonable initial mold temperature is recommended by the FNN, and then the mold temperature is inputted to injection molding process. Depending on injection molding result, specifically the insufficient quantity of an injection molded part, an appropriate mold temperature is recommend repeatedly through the FNN.

  • PDF

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

Micro Structure Fabrication Using Injection Molding Method (인젝션 몰딩 기술을 이용한 마이크로 구조물 성형)

  • Je T. J.;Shin B. S.;Chung S. W.;Cho J. W.;Park S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.253-259
    • /
    • 2002
  • Micro cell structures with high aspect ratio were fabricated by injection molding method. The mold inserts had dimension $1.9cm\times8.3cm$ composed of a lot of micro posts and were fabricated by LIGA process. The size of the micro posts was $157{\mu}m\times157{\mu}m\times500{\mu}m$ and the gaps between two adjacent posts were $50{\mu}m$. Using Polymethylmethacrylate (PMMA) injection molding was performed. The key experimental variables were temperature, pressure, and time. By controlling these, good shaped mim cell structures with $50{\mu}m$ in wall thickness and $500{\mu}m$ in depth were obtained. In order to understand micro molding mechanism, shape changes of molded PMMA were studied with experimental variables. And the durability of mold insert was investigated, too. The results show that the most important factor in molding processes was the mold temperature that is closely related to the filling of the melt into the micro cavity. And the holding time before cooling showed a great effect on the quality of molded PMMA.

  • PDF

A study on the effect of binder properties on feedstock and micro powder injection molding process (마이크로 분말사출성형에서 바인더 물성이 피드스탁 및 성형공정에 미치는 영향에 관한 연구)

  • Lee, Won-sik;Kim, Yong-dae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • The fabrication process of micro pattern structure with high precision and high aspect ratio using powder injection molding (PIM) is developed. In the PIM process, the metal powder is mixed with the binder systems and the mixture is injected into the metal mold. The injection molded green parts are debinded and sintered to reach final shape and properties. In this method, the optimization of physical properties such as fluidity and strength of the binder system is essential for perfect filling the high aspect ratio micro-pattern. For this purpose, the correlation between the properties of the binder system and feedstock and ${\mu}-PIM$ process was investigated, and a binder system with low viscosity at low temperature(about $110^{\circ}C$) and high strength after cooling was investigated and applied. Employing this process, high precision parts with line type micro pattern structure which has pattern size $160{\mu}m$ and aspect ratio more than 2 can be manufactured.

A study on the weld-strength in two-shot molding (이중 사출시 발행하는 Weld-line의 강도 연구)

  • Jang, Min-Kyu;Kim, Chang-jin;Choi, Hea-Suck;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.30-33
    • /
    • 2015
  • In injection molding, many kinds of defects have occurred because of a characteristic of plastics injection molding. Weld line is one of the defects is formed when separated melt fronts recombine together during the mold filling stage. That is one of problems in injection molding. Weld lines in the appearance of plastics parts can deteriorate visible quality. And most importantly, the local mechanical strength in the weld line area can be significantly weaker. It could be one of the most problems for structural applications. In this study, the mold available two-shot-molding of same polymers have been designed, and a series of experiment about tensile strength in weld line area has been conducted using Taguchi's design of experiment to optimize injection molding conditions decreasing of weld strength and find out a factors affected weld strength in two-shot- molding.

  • PDF