• Title/Summary/Keyword: mold level

Search Result 261, Processing Time 0.03 seconds

Development of 2-level Stack Mold for Functional Packaging (기능성 용기 2-level 스택 금형 개발)

  • Shin J.S.;Hwang S.H.;Kim Y.J.;Jung K.J.;Heo Y.M.;Yoon G.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.575-576
    • /
    • 2006
  • Recently, the demand of high-productivity injection mold increases since the consumption of packaging grows in the world. Stack mold is composed of more than two molds and it has very high productivity and economic efficiency. In advanced country, stack mold which has $4Level{\times}96cavity$ was developed already but, in occasion of domestic mold industry, there is no study of stack mold. In this study, stack mold which has $2Level{\times}4cavity$ is developed for securing the technique of manufacturing high-productivity mold.

  • PDF

Mold Level Stabilization of Continuous Steel Casting Systems Using a Variable Disturbance Observer (가변외란관측기를 이용한 연주시스템의 몰드 레벨 안정화)

  • Sohn, Myung-Gong;Son, Cheon-Don;Kim, Goo-Hwa;Lee, Duk-Man;Kwon, Sung-Ha;Jeung, Eun-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • This paper presents a control method to maintain stable mold level for unsteady bulging in high speed casting. The stabilizing mold level is an important factor to get high quality products. But, for various reasons, there are several disturbance factors which make mold level unstable. Bulging is one of disturbance factors and considered for the current stage of study. We design a disturbance observer to attenuate the effect of bulging which is periodic mold level disturbance. Since the period of bulging varies with the casting speed, the parameters of disturbance observer are changed by the casting speed. Simulation is illustrated to demonstrate stable performance of the proposed method in comparison with a previous method in a variable operating frequency.

Neural Fuzzy Mold Level Control for Continuous Steel Casting

  • Lim, Chang-Gyoon;Kueon, Yeong-Seob;Kim, Yigon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.146-152
    • /
    • 2002
  • Mold level control has been a major control task for continuous casting plants. The system involves nonlinearities such as stick-slip friction in the sliding gate, time-delay, friction force variations between molten steel and the inner wall of mold, and nozzle logging/unclogging. These complex problems should be solved to control mold level for steel cast. In this paper, we propose a neural fuzzy mold level control technique for solving these complex problems and give experiment studies to show the mold level control in continuous casting process.

Mold Oscillation Signal Detector of Eddy Current Mold Level Sensor (과류식(過流式) 연주(連鑄) Mold 탕면(湯面) 위치계(位置計)의 탕면진동신호(湯面振動信號) 검출방법(檢出方法))

  • Lee, Jin-Rak
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.37-38
    • /
    • 1988
  • In the continuous casting process, mold level sensor control system is very important for the quality of slab & bloom, in this paper, the principle of eddy current molr level sensor was studied and a method of mold oscillation signal detecting was purposed.

  • PDF

DEVELOPMENT OF A COMPENSATORY CONTROL SYSTEMS TO REDUCE HYSTERESIS OF STEEL LEVEL CONTROL EQUIPMENT IN CONTINUOUS CASTING MOLD

  • Iwanaga, T.;Kosakai, I.;Ebina, K.;Itashiki, M.;Furukawa, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1910-1914
    • /
    • 1991
  • In the continuous casting process, mold level fluctuation Is the major cause of the surface and sub-surface defects. In the No.3 bloom continuous caster at Kobe Works, we ensured that the major cause of mold level fluctuation was mechanical hysteresis which existed in the driving system of mold level control. Moreover, we found out that it was possible to greatly Improve the stability of mold level by estimating this mechanical hysteresis and compensating It on-line. As a result of applying a new level control system based on this method, we got accurate control over good stability.

  • PDF

Characteristics of Photosynthesis and Leaf Growth of Peucedanum japonicum by Leaf Mold and Shading Level in Forest Farming (임간재배지 내 부엽토 및 차광수준에 따른 갯기름나물의 광합성과 엽생장 특성)

  • Song, Ki Seon;Jeon, Kwon Seok;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • This study was carried out in order to investigate the photosynthesis response and leaf characteristics of Peucedanum japonicum growing in forest farming. The experiment was performed by leaf mold (pine tree and chestnut tree) and shading levels (0%, 35%, 50% and 75% shading). Light relative intensity was 100% (full sunlight), 60.3% (35% shading), 35.1% (50% shading), and 17.4% (75% shading) respectively. Light response curves of pine-leaf mold and chestnut-leaf mold were the highest in control (full sunlight) and these were getting lower in the higher shading level. Photosynthesis capacity and light saturation point were indicated higher in chestnut-leaf mold within the same shading level. As the shading level increased, maximum photosynthesis rate decreased. And apparent quantum yield was not indicated statistically significant difference from all treatment. Leaf area, leaf length and leaf width were significant higher in 35% shading and control under chestnut-leaf mold in all treatment. As the shading level increased, LAR (leaf area ratio), SLA (specific leaf area) and SPAD value decreased in pine-leaf mold and chestnut-leaf mold. As a result of surveying the whole experiment, P. japonicum is judged better growth and higher yield by maintaining 35% shading (relative light intensity 60%) under chestnut-leaf mold in forest farming.

Development of 2 Level × 4 Cavity Stack Mold for Plastic Container (플라스틱 용기 성형을 위한 스택금형 제작에 관한 연구)

  • Jung, Woo-Chul;Heo, Young-Moo;Shin, Kwang-Ho;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 2007
  • In recent, the demand of high-productivity injection mold increases because of the growth of international packaging market. The increase of productivity leads to the large-sized injection molding machine and peripheral devices. For solving this problem, the stack mold which is based on the existing machine and device is studied in advanced countries actively. In this study, as the preliminary research of stack mold development, the stack mold which has 2 Level ${\times}4$ Cavity is designed and manufactured. Besides, the motion and structural analysis are executed to verify the stability of developed stack mold.

  • PDF

Growth and Photosynthetic Characteristics of Atractylodes japonica by Light Controls and Leaf Mold Treatment in Forest Farming (임간재배 시 광조절과 부엽토 처리에 따른 삽주의 생육 및 광합성 특성)

  • Jeon, Kwon Seok;Song, Ki Seon;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • This study was carried out to determine the effects of light controls and leaf mold on root growth and physiological responses of Atractylodes japonica growing in forest farming. The experiment was performed by light controls (100%, 62.5%, 40.3% and 19.7% of full sunlight) and application of leaf mold to soil. Height, stem diameter, number of flower buds and root collar diameter were the highest in leaf mold within 62.5% of full sunlight (relative light intensity 62.5%). And these were the higher in leaf mold within each light level. As the shading level increased, light saturation point and maximum photosynthesis rate decreased. As the light level decreased, SPAD value increased in control and leaf mold. As a result of surveying the whole experiment, A. japonica was judged worse root growth under the lower light level. It was concluded that the light level was one of the most important factors to produce A. japonica. Also, producing high-quality of A. japonica with the price competitiveness by using leaf mold like the experiment can be an effective way to increase incomes for farmers.

A Study on Improvement of Birefringence Characteristics of Injection-Molded Plastic Parts by Rapid Mold Heating (급속 금형가열에 의한 사출성형품의 복굴절특성 개선에 관한 연구)

  • Park, Keun;Kim, Byung H.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.229-233
    • /
    • 2007
  • The present work focuses on the prediction of birefringence in injection-molded part and its improvement by rapid mold heating. To calculate birefringence, flow-induced residual stress is computed through a fully three-dimensional injection molding analysis. Then the stress-optical law is applied from which the order of birefringence can be evaluated and visualized. The birefringence patterns are predicted for a rectangular plate with a variation of mold temperature, which shows that the amount of molecular orientation and birefringence level decreases with an increase of mold temperature. The effect of mold temperature on the order of birefringence is also studied for a thin-walled rectangular strip, and the relevant results are compared with experimental measurements. Both predicted and experimental patterns of birefringence are in agreements on the observation that the birefringence level diminishes significantly when the mold temperature is raised over the glass transition temperature.

Thermal Fatigue Analysis of Wafer Level Embedded SiP by Changing Mold Compounds and Chip Sizes (몰드물성 종류 및 칩 크기 변화에 따른 웨이퍼 레벨 Sip에서의 열 피로 해석)

  • Jang, Chong Min;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.504-508
    • /
    • 2013
  • This paper describes in detail the life prediction models and simulations of thermal fatigue under different mold compounds and chip sizes for wafer-level embedded SiP. Three-dimensional finite element models are built to simulate the viscoplastic behaviors for various mold compounds and chip sizes. In particular, the bonding parts between a mold and silicon nitride (Si3N4) are carefully modeled, and the strain distributions are studied. Three different chip sizes are used, and the effects of the mold compounds are observed. Through the numerical studies, it is found that type-C, which has a relatively lower Young's modulus and higher CTE, has a better fatigue life than the other mold compounds. In addition, the $4{\times}4$ chip has a shorter life than the $6{\times}6$ and $8{\times}8$ chips.