• Title/Summary/Keyword: moisture correction

Search Result 59, Processing Time 0.021 seconds

Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory

  • Laoufi, Imene;Ameur, Mohammed;Zidi, Mohamed;Bedia, El Abbes Adda;Bousahla, Abdelmoumen Anis
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.889-911
    • /
    • 2016
  • Using the hyperbolic shear deformation plate model and including plate-foundation interaction (Winkler and Pasternak model), an analytical method in order to determine the deflection and stress distributions in simply supported rectangular functionally graded plates (FGP) subjected to a sinusoidal load, a temperature and moisture fields. The present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Materials properties of the plate (elastic, thermal and moisture expansion coefficients) are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. Numerical examples are presented and discussed for verifying the accuracy of the present theory in predicting the bending response of FGM plates under sinusoidal load and a temperature field as well as moisture concentration. The effects of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratio, ratio of elastic coefficients (ceramic-metal) and three distributions for both temperature and moisture on deflections and stresses are investigated.

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Applicability of TDR Sensor for Monitoring Moisture Content of Landfill - Focusing on the 2nd Landfill of SUDOKWON Landfill Site - (매립지 함수율 모니터링을 위한 TDR 센서의 적용성 검토 - 수도권매립지 제2매립장을 중심으로 -)

  • Won-Young Choi;Young-Kyu Kim;Chul Hee Lee;Yong Jae Lee;Seung-Kyu Chun
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.4
    • /
    • pp.1-11
    • /
    • 2024
  • This study evaluated a method for prompt and periodic monitoring of moisture content in the waste layer of a landfill using a Time Domain Reflectometry (TDR) sensor, aimed at ensuring the stable operation of the bioreactor facility at the 2nd landfill of the SUDOKWON Landfill Site. It was found that the TDR sensor is sensitive to variables such as temperature changes and ion content in both the waste layer and leachate, indicating that a correction equation is necessary. A correction equation derived through regression analysis demonstrated a high correlation (correlation coefficient = 0.9647), and field verification experiments confirmed its reliability with an average deviation of only 1.5%. This verifies that the TDR sensor is effective for measuring and monitoring moisture content in landfills. It is also anticipated to be useful for various applications, including monitoring leachate levels, detecting leachate leakage, and assessing rainwater infiltration.

The steam turbine condenser pressure optimization with different heat rate correction curves (각기 다른 열소비율 보정곡선을 갖는 증기터빈의 최적 복수기 운전압력 설정)

  • Cho, Cheon-Hwan;Baek, Nam-Ho;Hur, Jin-Hyek;Lee, Jae-Heon;Moon, Seung-Jae;Yoo, Ho-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.224-227
    • /
    • 2008
  • The present study performs a test of a change in a condenser pressure on two kinds of power plants having different condenser pressure-heat rate correction curve and evaluates the results. According to a result of the test, it is confirmed that a sub-critical drum type steam power plant is optimally operated at the condenser pressure of 38㎜Hga that is designed, even during winters. On the other hand, it can be found that a supercritical once through type steam power plant operated at the condenser pressure that is reduced below a design value, that is, up to 28㎜Hga during winters is advantageous in view of turbine efficiency and is operated without a problem in facility operation such as moisture erosion, turbine vibration, etc. Also, the present study compares and reviews a condenser pressure-heat rate correction curve proposed by a manufacturer and a test value. The present study proposes optimum condenser operation pressure capable of concurrently satisfying the stable operation and efficiency improvement of the power plant facility that is operating, making it possible to support an efficient operation of a power plant.

  • PDF

Study on Diagnosis for Transformers by Tan $\delta$ and Moisture of Insulation Oil According to Thermal Aging (절연유의 열열화에 따른 Tan $\delta$와 수분의 변화에 의한 변압기의 예방진단 연구)

  • HwangBo, Seung;Han, Min-Koo;Kwak, Hee-Ro;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.241-245
    • /
    • 1988
  • This paper reports the experiments regarding to diagnosis techniques for power transformers by measuring dissipation factor and moisture contents of mineral oils. Thermal aging environments of mineral oils were varied by the specially designed systems. Thermal aging of elevated temperature of $90^{\circ}C$ was performed for about 240 and 460 hours, respectively. Dissipation factor, permittivity, and water content were measured. Our test samples were not exposed to air. Dissipation factor increased while permittivity did not change. The level of dissipation factor determining the insulating quality of mineral oil was compared with the previous results of resistivity and several correction factor.

  • PDF

Correction Measures That Take Humidity into Account in Insulating Oil Test Measurement Results (습도를 고려한 절연유 시험 결과의 보정 방안 연구)

  • Wansu Kim;Jae-pil Roh;Seock-gu Kang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.541-546
    • /
    • 2024
  • Climate conditions, especially transport and storage, are a very important factor in the process of sampling and testing insulation oil in the field. The samples of insulating oil exposed to the atmosphere affect the dielectric strength, total acid number and moisture test value by oxygen and high humidity environment and may also affect the results according to the criteria specified in each test. Therefore, reliable test values for insulating oil testing require consideration of the atmospheric environment of the test site, including oxygen and humidity. In this paper, each test was conducted on insulating oil exposed to various time and humidity environments, and the effect of the atmospheric environment on the test results was analyzed by comparing and analyzing with the first insulating oil.

Effects of Relative Humidity and Fiber Properties on the Moisture Permeability of Multilayer Fabric Systems (환경 및 섬유 특성이 멀티레이어 직물시스템의 투습성에 미치는 영향)

  • Suhyun Lee;Sohyun Park
    • Fashion & Textile Research Journal
    • /
    • v.25 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • This study aimed to determine the effects of relative humidity and fiber properties on the moisture permeability of multilayer systems by measuring water vapor transmission in the overlapping condition of various fabrics. The results confirmed that the property of the fabric in contact with the humid environment affects the moisture permeability. If the layer facing the humid environment is hydrophobic and the layer facing the dry environment is superhydrophobic, water vapor transmission increases by up to 17.8% compared to the opposite conditions. Comparing the correction values of the water vapor transmission reflecting the thickness of the specimen under the multilayer condition showed that permeability was higher when the hydrophilic or hydrophobic layer was facing the humid environment. The opposite was true from the "push-pull" effect of absorption mechanism. In the case of moisture permeability, the more hydrophilic the surface facing the humid environment, the more permeable that water vapor diffuses and passes through. It was concluded that the "pull-push" effect, in which water vapor diffuses widely through the hydrophilic facing a humid environment and then passes through the hydrophobic layer, contributes to the improvement of permeability. Permeability differed according to the multilayer overlapping condition. When the relative humidity was high, the "pull-push" effect was insignificant. This is caused by water droplets absorption after the partial migration of water due to condensation. These results suggest that the overlapping conditions and properties of fabrics should vary depending on heavy sweating or not.

Correlation Analysis Between Soil Moisture Retrieved from Satellite Images and Ground Network Measurements (위성관측 토양수분과 지상관측망 자료의 상관성 분석)

  • Kim, Gwang-Seob;Kim, Jong-Pil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.69-81
    • /
    • 2011
  • The soil moisture data of the National Aeronautics and Space Administration(NASA) and the Vrije Universiteit Amsterdam(VUA) in collaboration with NASA, retrieved from Advanced Microwave Scanning Radiometer-Earth observing system(AMSR-E) brightness temperature, were collected to evaluate the applicability of the remote sensed soil moisture in South Korea. The averages of the soil moisture by in-situ sensors, by NASA and by VUA-NASA are approximately 0.218, 0.119, and $0.402m^3/m^3$, respectively. This indicates that the soil moisture of NASA was underestimated and that of VUA-NASA was overestimated. The soil moisture products of VUA-NASA showed a better relationship with the in-situ data than that of NASA data. However, there are still limitations of C-band soil moisture measurements. To improve the applicability of satellite soil moisture measurements, bias correction and other post processings are essential using in-situ soil moisture measurements at various surface conditions.

Experimental study on deformation and strength property of compacted loess

  • Mei, Yuan;Hu, Chang-Ming;Yuan, Yi-Li;Wang, Xue-Yan;Zhao, Nan
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.161-175
    • /
    • 2016
  • A series of experimental studies are conducted on the deformation and shear strength property of compacted loess. The results reveal that the relationships of both the initial moisture content (w) and the initial degree of compaction (K) of compacted loess with cohesion (w) and the angle of internal friction (${\varphi}$) are linear. The relationship between the secant modulus ($E_{soi}$) and K is also linear. The relationship between $E_{soi}$ and w can be fitted well by a second-order polynomial. Further, when the influences of w and K are ignored, the relationship between the confined compression strain (${\varepsilon}$) and vertical pressure (p) can be expressed by a formula. A correction formula for the deformation of compacted loess caused by a change in w and K is derived on the basis of the study results.

Trends of Stability Indices and Environmental Parameters Derived from the Rawinsonde Data over South Korea

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Journal of the Korean earth science society
    • /
    • v.32 no.5
    • /
    • pp.461-473
    • /
    • 2011
  • In this paper, trends of the widely used stability indices (SIs) and environmental parameters (EPs) were examined by using the 30-year routine rawinsonde data observed in three upper air observatories (Osan, Gwangju and Pohang) over South Korea. To take into account of the contribution of water vapor to a parcel density, we applied the virtual temperature correction in calculating the SIs and EPs. The trends of SIs and EPs indicated significant increases of temperature and moisture contents, especially at the low-to-mid troposphere during the last 10 years. The warming trend in the lower troposphere shows about 3 times greater than that of the global average (+0.10- $+0.20^{\circ}C$/10 years), whereas the cooling trend of lower stratosphere demonstrates a similar trend with the global average (-0.33- $-0.60^{\circ}C$/10 years). The vertical stability is clearly reduced due to the unsymmetrical change of atmospheric elements. The unstabilizing trend with the increased moisture contents gradually changed the atmospheric environment in South Korea into the conditions favorable for the occurrence of severe weather or intensifications of such events. These trends are consistent with the recent observations, which showed clear increase in the intensity and frequency of heavy rainfalls.