• Title/Summary/Keyword: moisture condition

Search Result 1,396, Processing Time 0.027 seconds

Improvement of Acid Digestion Method by Microwave for Hazardous Heavy Metal Analysis of Solid Refuse Fuel (고형연료제품의 유해중금속 분석을 위한 마이크로파 산 분해법의 개선)

  • Yang, Won-Seok;Park, Ho-Yeun;Kang, Jun-Gu;Lee, Young-Jin;Lee, Young-Kee;Yoon, Young-Wook;Jeon, Tae-Wan
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.616-626
    • /
    • 2018
  • The quality standards of solid refuse fuel (SRF) define the values for 12 physico-chemical properties, including moisture, lower heating value, and metal compounds, according to Article 20 of the Enforcement Rules of the Act on Resource Saving and Recycling Promotion. These parameters are evaluated via various SRF Quality Test Methods, but problems related to the heavy metal content have been observed in the microwave acid digestion method. Therefore, these methods and their applicability need improvement. In this study, the appropriate testing conditions were derived by varying the parameters of microwave acid digestion, such as microwave power and pre-treatment time. The pre-treatment of SRF as a function of the microwave power revealed an incomplete decomposition of the sample at 600 W, and the heavy metal content analysis was difficult to perform under 9 mL of nitric acid and 3 mL of hydrochloric acid. The experiments with the reference materials under nitric acid at 600 W lasted 30 minutes, and 1,000 W for 20 or 30 minutes were considered optimal conditions. The results confirmed that a mixture of SRF and an acid would take about 20 minutes to reach $180^{\circ}C$, requiring at least 30 minutes of pre-treatment. The accuracy was within 30% of the standard deviation, with a precision of 70 ~ 130% of the heavy metal recovery rate. By applying these conditions to SRF, the results for each condition were not significantly different and the heavy metal standards for As, Pb, Cd, and Cr were satisfied.

Research on the Germination and Growth of Ginseng Seeds According to ICT-Based Soil (ICT 기반의 인삼 공정 육묘 시 상토에 따른 발아 특성)

  • Kim, D.H.;Kim, Y.B.;Koo, H.J.;Baek, H.J.;Lee, S.B.;Hong, E.K.;Kim, S.K.;Chang, K.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.51-61
    • /
    • 2021
  • As a result of examining the germination rate between ginseng varieties, Jagyongjong varieties had the highest germination rate, and Yeonpung. had the lowest germination rate. In the ginseng seed germination rate experiment, the highest germination rate and growth condition were shown in artificial soil conditions of the ratio of Peatmoss 6.5: Pearlite 2: Masato 1.5. Good soil conditions require adequate soil moisture forces during the incubation period. The cultivation of ginseng medicinal crops requires optimal soil breathability, soil pH, and soil stabilization, which are important for root breathing. Microbial activity in the soil has a great influence on the growth of ginseng. The optimum pH of the soil for ginseng cultivation is 5.0-5.5 As a result of the experiment, the soil remained in an appropriate range after a month. In general, when the EC concentration value of the soil for ginseng cultivation is 0.2 mS/cm or more, growth deteriorates, and when the EC concentration value is 0.5 mS/cm or more, concentration obstacles such as root decay occur. As a result of the analysis, the higher the concentration value of EC, the more likely it is to interfere with ginseng growth.

A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI (GK2A 일단위 NDVI의 과소추정 노이즈 실시간 보정)

  • Lee, Soo-Jin;Youn, Youjeong;Sohn, Eunha;Kim, Mija;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1301-1314
    • /
    • 2022
  • Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.

Effect of Low Pressure Steam Explosion Treatment on Prevention of Resin Exudation from Wood under High Temperature Surroundings (저압증기폭쇄(低壓蒸氣爆碎)처리가 고온영역(高溫領域)하에서의 목재(木材) 수지삼출(樹脂渗出) 예방에 미치는 영향)

  • Lee, Nam-Ho;Park, Hee-Jun;Li, Chengyuan;Jin, Young-Moon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.9-18
    • /
    • 2004
  • This study was carried out to find the efficient methods for preventing resin exudation from spruce board during high temperature environment service.In the dry-air oven test, in-use temperature related to resin exudation of 110℃ could be obtained by the appropriate kiln drying without any special treatment, and the in-use temperature of the radio-frequency/vacuum (RF/V)-dried boards was about 20℃ higher than that of the conventional kiln-dried boards.In the autoclave test, resin exudation was not found from any board dried in the conventional kiln and in the RF/V kiln after the low pressure steam explosion (SE) treating, while for the control resin exudations were more severe in the autoclave test above 130℃ than in the dry-air oven test. It, therefore, would be suggested that resin exudation during high temperature service condition can be prevented more effectively by super-heated steaming green boards than by high-temperature drying boards with low moisture.

Evaluation for the Manufacturing Characteristics and Thermal Conductivity of Engineering Scale Bentonite-Sand Buffer Blocks (공학규모 벤토나이트-모래 완충재 블록의 성형특성 및 열전도도 평가)

  • Lee, Deuk-Hwan;Yoon, Seok;Kim, Jin-Seop;Lee, Gi-Jun;Kim, Ji-Won;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.113-123
    • /
    • 2022
  • The required density relationship according to the press pressure of the floating die method and the homogeneity of the density distribution in the buffer block was evaluated to analyze the manufacturing characteristics of engineering scale bentonite-sand buffer blocks. In addition, the thermal conductivity was measured and compared with that of the pure bentonite buffer block to evaluate the level of thermal conductivity performance improvement of the bentonite-sand buffer material. As a result, it was confirmed that the standard deviation of dry density decreased to 0.011 and showed a homogeneous density distribution under the condition of press pressure greater than 400 kg/cm2. Furthermore, as a result of the thermal conductivity test, the thermal conductivity of the buffer with optimum moisture content conditions was 1.345 and 1.261 W/(m·K) under the press pressure of 400 and 600 kg/cm2, respectively. It increased by 16.1% and 11.0% compared to the pure bentonite buffer material. Based on the results of this study, it is judged that it can be used as fundamental data for manufacturing a homogeneous bentonite-sand buffer block on an engineering scale.

Analysis on the Rainfall Driven Slope Failure Adjacent to a Railway : Flume Tests (강우로 인한 철도 연변사면의 활동분석 : 실내모형실험)

  • SaGong Myung;Kim Min-Seok;Kim Soo-Sam;Lee In-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.83-91
    • /
    • 2006
  • Recently, the intensive rainstorm possibly induced by global warming plays a key role on the instability of railway adjacent slopes. The instability of slopes results as covering and loss of railway lines induced by slided soil mass. According to the site investigation on the failed slopes triggered by rainfall, low types of slope failure were observed: shallow, intermediate, gully erosion, and soil-rock interface failures. The observation reveals the different characteristics of slope failure depending on the thickness of soil layer, morphological features of slope, etc. Based upon the observations, flume tests were conducted to analyze the sliding mechanism of each failure. The variables of flume test are soil layer thickness, rainfall intensity, and morphology of slope under the constant condition of the percentage of fine, initial soil moisture content, slope angle and compaction energy. Test results show that shallow failure was mostly observed from the surface of the slope and caused by the soil erosion; in addition, compared to the other types of failure, the occurrence of initial erosion is late, however, the development of erosion is fast. In gully erosion failure, the collected water from the water catchment area helps erosion of the upper soil layer and transfer of residual corestone, which impedes the erosion process once the upper soil layers are eroded and corestone are exposed. The soil-rock interface failure shows the most fast initial erosion process among the failure types. Interestingly, the common feature observed from the different types of failure was the occurrence of the initial deformation near the toe of slopes which implies the existence of surbsurface flow along the downslope direction.

Evaluating the contribution of calculation components to the uncertainty of standardized precipitation index using a linear mixed model (선형혼합모형을 활용한 표준강수지수 계산 인자들의 불확실성에 대한 기여도 평가)

  • Shin, Ji Yae;Lee, Baesung;Yoon, Hyeon-Cheol;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.509-520
    • /
    • 2023
  • Various drought indices are widely used for assessing drought conditions which are affected by many factors such as precipitation, soil moisture, and runoff. The values of drought indices varies depending on hydro-meteorological data and calculation formulas, and the judgment of the drought condition may also vary. This study selected four calculation components such as precipitation data length, accumulation period, probability distribution function, and parameter estimation method as the sources of uncertainty in the calculation of standardized precipitation index (SPI), and evaluated their contributions to the uncertainty using root mean square error (RMSE) and linear mixed model (LMM). The RMSE estimated the overall errors in the SPI calculation, and the LMM was used to quantify the uncertainty contribution of each factor. The results showed that as the accumulation period increased and the data period extended, the RMSEs decreased. The comparison of relative uncertainty using LMM indicated that the sample size had the greatest impact on the SPI calculation. In addition, as sample size increased, the relative uncertainty related to the sample size used for SPI calculation decreased and the relative uncertainty associated with accumulation period and parameter estimation increased. In conclusion, to reduce the uncertainty in the SPI calculation, it is essential to collect long-term data first, followed by the appropriate selection of probability distribution models and parameter estimation methods that represent well the data characteristics.

Optimization of Olive Flounder Paralichthys olivaceus Size as a Raw Material for Sikhae and Quality Characteristics of Sikhae with Suitable Olive Flounder Paralichthys olivaceus Weight (식해 소재로서 넙치(Paralichthys olivaceus) 크기의 최적화 및 이를 활용한 식해의 품질 특성)

  • Sang In Kang;Yu Ri Choe;Sun Young Park;Si Hyeong Park;Ji Hoon Park;Hye Jeong Cho;Min Soo Heu;Jin-Soo Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.5
    • /
    • pp.606-614
    • /
    • 2023
  • This study was conducted to optimize the size of olive flounder Paralichthys olivaceus (OF) as a material of sikhae and to investigate the quality characteristics. The results on the protease activity of OF meat, protein and ash contents of the bone, and yields and hardness of fish bone during fermentation time suggest that the suitable fish weight for sikhae was less than 250 g. The proximate compositions of the OF sikhae fermented under optimum condition (fermentation for 9 days at 15℃), were 73.0% moisture, 12.0% crude protein, 1.3% crude fat and 2.4% ash. The salinity, titration acidity and amino acid nitrogen contents per 100 g sikhae were 1.7 g, 2.46 g, and 311.3 mg, respectively. The lactic acid bacteria concentration in the sikhae were 8.84 log CFU/g, which were higher than those (5.78-6.62 log CFU/g) of 5 kind of commercial flounder sikhae. The functional properties, such as ACE inhibitory activity (69.0%), antioxidative activity (69.3%), α-glucosidase inhibitory activity (22.7%), xanthine oxidase inhibitory activity (88.2%), and nitrite scavenging activity (96.4%) of the sikhae were superior to those of 5 kind of commercial flounder sikhae.

Research on soil composition measurement sensor configuration and UI implementation (토양 성분 측정 센서 구성 및 UI 구현에 관한 연구)

  • Ye Eun Park;Jin Hyoung Jeong;Jae Hyun Jo;Young Yoon Chang;Sang Sik Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.76-81
    • /
    • 2024
  • Recently, agricultural methods are changing from experience-based agriculture to data-based agriculture. Changes in agricultural production due to the 4th Industrial Revolution are largely occurring in three areas: smart sensing and monitoring, smart analysis and planning, and smart control. In order to realize open-field smart agriculture, information on the physical and chemical properties of soil is essential. Conventional physicochemical measurements are conducted in a laboratory after collecting samples, which consumes a lot of cost, labor, and time, so they are quickly measured in the field. Measurement technology that can do this is urgently needed. In addition, a soil analysis system that can be carried and moved by the measurer and used in Korea's rice fields, fields, and facility houses is needed. To solve this problem, our goal is to develop and commercialize software that can collect soil samples and analyze the information. In this study, basic soil composition measurement was conducted using soil composition measurement sensors consisting of hardness measurement and electrode sensors. Through future research, we plan to develop a system that applies soil sampling using a CCD camera, ultrasonic sensor, and sampler. Therefore, we implemented a sensor and soil analysis UI that can measure and analyze the soil condition in real time, such as hardness measurement display using a load cell and moisture, PH, and EC measurement display using conductivity.

Prediction of future hydrologic variables of Asia using RCP scenario and global hydrology model (RCP 시나리오 및 전지구 수문 모형을 활용한 아시아 미래 수문인자 예측)

  • Kim, Dawun;Kim, Daeun;Kang, Seok-koo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.551-563
    • /
    • 2016
  • According to the 4th and 5th assessment of the Intergovernmental Panel on Climate Change (IPCC), global climate has been rapidly changing because of the human activities since Industrial Revolution. The perceived changes were appeared strongly in temperature and concentration of carbon dioxide ($CO_2$). Global average temperature has increased about $0.74^{\circ}C$ over last 100 years (IPCC, 2007) and concentration of $CO_2$ is unprecedented in at least the last 800,000 years (IPCC, 2014). These phenomena influence precipitation, evapotranspiration and soil moisture which have an important role in hydrology, and that is the reason why there is a necessity to study climate change. In this study, Asia region was selected to simulate primary energy index from 1951 to 2100. To predict future climate change effect, Common Land Model (CLM) which is used for various fields across the world was employed. The forcing data was Representative Concentration Pathway (RCP) data which is the newest greenhouse gas emission scenario published in IPCC 5th assessment. Validation of net radiation ($R_n$), sensible heat flux (H), latent heat flux (LE) for historical period was performed with 5 flux tower site-data in the region of AsiaFlux and the monthly trends of simulation results were almost equaled to observation data. The simulation results for 2006-2100 showed almost stable net radiation, slightly decreasing sensible heat flux and quite increasing latent heat flux. Especially the uptrend for RCP 8.5 has been about doubled compared to RCP 4.5 and since late 2060s, variations of net radiation and sensible heat flux would be significantly risen becoming an extreme climate condition. In a follow-up study, a simulation for energy index and hydrological index under the detailed condition will be conducted with various scenario established from this study.