• 제목/요약/키워드: modulus of toughness

검색결과 193건 처리시간 0.025초

$\alpha$-SiC-WC 전도성 세라믹 복합체의 특성에 미치는 무가압 Annealing 온도 (Effect of Pressurless Annealing Temperature on the Properties of $\alpha$-SiC-WC Electroconductive Ceramic Composites.)

  • 신용덕;오상수;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권5호
    • /
    • pp.241-247
    • /
    • 2004
  • The composites were fabricated 61 vol.%$\alpha$-$\alpha$-SiC and 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 1700, 1800, 190$0^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed $\alpha$-SiC(2H), WC, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ) crystal phase. The relative density, the flexural strength, fracture toughness and Young's modulus showed respectively the highest value of 99.4%, 375.76㎫, 5.79㎫ㆍm$\frac{1}{2}$, and 106.43㎬ for composite by pressureless annealing temperature 190$0^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of 1.47${\times}$10$^{-3}$ $\Omega$$.$cm for composite by pressureless annealing temperature 190$0^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the $\alpha$-SiC-WC composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$.

마이크로피브릴화 셀룰로오스(MFC)/프로폴리스 첨가 PLA 필름 제조 및 특성 분석 (Manufacture and Characterization of Microfibrillated Cellulose (MFC)/Propolis-Incorporated PLA Films)

  • 이연주;강혜지;김민수;정영훈
    • 한국포장학회지
    • /
    • 제29권2호
    • /
    • pp.103-110
    • /
    • 2023
  • The study aimed to enhance the properties of polylactic acid (PLA), a biodegradable and biocompatible substitute for fossil-based plastics. Since the applicability of PLA has been limited because of its toughness and brittleness, microfibrillated cellulose (MFC) and propolis were introduced into PLA. As a result, the PLA film with MFC/propolis showed significant improvements in mechanical strength, elongation, and storage modulus, while also experiencing a decrease in the glass transition temperature. Additionally, the presence of polyphenols in propolis led to a reduction in light transmittance in the UV wavelength range. These enhancements are attributed to MFC tightly bonding with PLA polymers, and propolis acting as a plasticizer and mediator between MFC and PLA, preventing agglomeration. These reinforced PLA films have the potential to be used in flexible packaging for light-sensitive products.

매우 취성인 재료의 동적 파괴인성치 결정법 (Determination of Dynamic Fracture Toughnesses for very Brittle Materials)

  • 이억섭;전현선
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.160-165
    • /
    • 1997
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughnesses for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracturetoughnesses for very brittle materials because of the small crack initiation load which may be engulfed by the inertia load of the instrumented tup. To evaluate the dynamic fracture toughnesses of very brittle materials, such as chalk or plaster,it is thus, necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has very small Young's modulus comparing to one of the conventional steel tup, is used for the instrumented Charpy impact test, and a proper testing method to evaluate the dynamic fracture behavior of very brittle materials is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initiation of the very brittle materials.

  • PDF

Gas Pressure Sintering, Mechanical Properties and Microstructure of Three Binds of Si3N4 Ceramics

  • Ha, Sung-Soo;Kim, Chang-Sam;Cheong, Deoek-Soo
    • 한국세라믹학회지
    • /
    • 제41권10호
    • /
    • pp.723-727
    • /
    • 2004
  • Three kinds of $Si_3N_4$ powders (M-11, SN-ESP, and SN-E10) were gas-pressure sintered at $1700-1900^{\circ}C$ for 2 h under 18 atm $N_2$. Their densification behavior was investigated and compared as well as the mechanical properties and microstructure of the resulting ceramics. SN-ESP and SN-E10 started to reach nearly full densification at $1750^{\circ}C$ and showed almost no decomposition up to $1900^{\circ}C$. In contrast, M-11 was not fully densified until $1800^{\circ}C$ and showed about $3\%$ weigh loss at $1900^{\circ}C$ indicating poor thermal stability. SN-ESP and SN-E10 showed much higher strength both at room temperature and $1200^{\circ}C$ than M-11 when fully densified. Compared with SN-ESP, SN-E10 was not only a little better in strength (both at room temperature and $1200^{\circ}C$) and fracture toughness but also much higher in the Weibull modulus due to more interlocked microstructure by well elongated grains.

나노 MMT-폴리머 복합체를 이용한 폴리머 콘크리트의 강도 특성 (Properties on the Strength of Polymer Concrete Using Nano MMT-UP Composite)

  • 조병완;문린곤;박승국
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.761-766
    • /
    • 2006
  • 폴리머 복합체는 우수한 강도와 내구성으로 건설현장에서 프리캐스트 부재 및 보수, 보강재로서 널리 쓰이고 있어 폴리머 복합체의 경제성 및 성능 향상에 관한 연구가 이루어지고 있다. 폴리머 나노 복합체는 나노미터 수준의 크기를 가진 Clay 등의 무기 물질을 나노분산 상으로 폴리머에 균일 혼합시킨 것으로 산업적 응용가능성 면에서 뿐만 아니라 재료 및 공학분야에서도 많은 관심을 가지고 있다. 그리고 기존의 복합체 보다 1/10 혹은 그 이상의 낮은 함량의 분산상만으로도 더 우수한 강도와 역학적 특성 및 열안정성을 나타낸다. 본 실험에서는 폴리머 복합체의 성능을 향상시키고자 유기화된 몬모릴로나이트(MMT)와 유기화 되지 않은 몬모릴로나이트(MMT)를 사용하여 박리된 MMT-UP 나노 복합체를 제조하였다. XRD와 TEM실험결과, Cloisite 30B-UP 나노 복합체에서 층과 층 사이가 $100{\AA}$ 이상 떨어져 단일층으로 분산되었기 때문에 박리가 되었음을 알 수 있었다. 또한 역학적 특성은 기존복합체보다 인장강도와 인장탄성계수을 비교하였을 때 매우 향상됨을 알 수 있었고 열적 특성도 기존복합체보다 우수한 함을 나타내었다. 박리정도가 우수한 MMT-UP 복합체로 제조한 폴리머 콘크리트에서도 순수한 UP를 사용한 것보다 역학적 특성이 두드러졌다. 또한 폴리머 콘크리트의 강도와 탄성계수는 MMT-UP 복합체의 인장강도 및 인장탄성계수와 상관성을 갖는 것으로 판단된다.

반복적 염수침지가 강섬유 혼입 콘크리트의 휨성능에 미치는 영향 (Effect of Repeated Wet/Dry Cycles of Salt Solution on Flexural Performance of Steel Fiber Reinforced Concrete)

  • 김지현;최유진;정철우
    • 한국건축시공학회지
    • /
    • 제22권6호
    • /
    • pp.553-564
    • /
    • 2022
  • 콘크리트는 건설분야의 대표적인 복합재료로써 아주 우수한 재료이나, 불균질성을 가진 취성적 재료로 휨이나 인장력에 대해 취약한 거동을 보인다. 이러한 단점을 보완하기 위해 다양한 종류의 섬유를 보강한 콘크리트를 활용하고 있다. 특히, 강섬유는 다른 고분자 섬유에 비해 시장성이 좋으며 우수한 역학적 성능을 가지고 있어 콘크리트 보강재로 널리 사용되고 있다. 그러나 해양 환경에 노출된 부위에 시공할 때 염소이온 침투에 따른 부식의 영향으로 콘크리트의 내구성을 저하시킨다는 문제점을 가진다. 따라서 본 연구에서는 반복적 연수침지가 강섬유 혼입 콘크리트에 미치는 다양한 영향들에 관해 평가해 보고자 하였다. 실험 결과에 따르면, 37주간의 반복적 염수 침지 기간 동안 콘크리트의 상대동탄성 계수의 감소는 관찰되지 않았고, 염수 침지 종료 후의 휨강도의 감소도 발생하지 않았다. 반복시험 종료 후 시편의 파단면 육안 관찰 시 강섬유 부식의 증거는 확인할 수 없었다. 그러나 휨인성은 감소하였는데, 이는 콘크리트 시편의 절반 정도가 휨 시험의 최대 측정변위인 3mm지점에 도달하지 못하고 파괴가 발생하였기 때문이다. 비록 반복적 염수침지가 강섬유의 부식을 통한 콘크리트 균열을 발생시키지 못하더라도, 휨인성에는 영향을 미칠 수 있으므로 해양환경에 강섬유 보강 콘크리트를 사용 시 이를 유의해야 할 것으로 판단된다.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Hybrid Glass Ionomer cement의 비커스경도와 간접인장강도에 관한 연구 (A STUDY ON THE VICKER'S HARDNESS AND DIAMETRAL TENSILE STRENGTH OF HYBRID GLASS IONOMER)

  • 권균원;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권2호
    • /
    • pp.505-518
    • /
    • 1997
  • The objective of this investigation was to compare the effects of water storage on the aspect of hardness and diametral tensile strengths of four hybrid glass ionomer cements(two compomers and two resin-reinforced glass ionomers) with a resin composite material. One composite resin(Degufill Ultra), two compomers(Dyract, Compoglass Cavifil), and two resin-reinforced glass ionomers(Fuji Duet, Vitremer) were used in this study. Cylindrical specimens were prepared and stored at $36{\pm}1^{\circ}C$ in distilled water for 10 minutes after set, and then tested on an Instron testing machine(No.4467) at 1.0 mm/min displacement rate. Vicker's hardness and diametral tensile strengths as time elapsed were measured after aging in water for 10 minutes, 1 hour, 3 hours, 1 day, 3 days, 5 days and 7 days at $36{\pm}1^{\circ}C$. During the test of diametral tensile strength, stress-strain curves were obtained, from which the compressive modulus were calculated and compared. The structure of four set glass ionomer cement mass was observed on SEM(Hitachi, S-2300) after being etched with 9.6% hydrofluoric acid for 1 minute. The results were as follows; 1. The hardness of the experimental group(compomer and the resin reinforced glass ionomer cement) did not exceed the value of control group(Degufill Ultra). 2. Vicker's hardness of the Fuji Duet tended to increase succeedingly, Dyract was decreased after 3 hours in water, and Vitremer was the lowest. 3. The control group(Degufill Ultra) presented progressively on increased diametral tensile strength with time, Fuji Duet were decreased after 3 days, Compoglass Cavifil and Vitremer were decreased after 5 days in water storage. 4. Compressive modulus of the control group(Degufill Ultra) and Dyract were increased sharply timely, Fuji Duet and Vitremer were increased smoothly by lapse of time in water. Fuji Duet were stronger than Vitremer. On the other hand, Vitremer exhibited the lowest toughness. 5. The microstructure of compomer was similar with that of the composite resin(Degufill Ultra), and the fillers in resin-reinforced glass ionomer cements were noticed. It can be concluded that mechanical properties of hybrid glass ionomer cements is weaker than composite resin, and that the compomers or the resin-reinforced glass ionomers can not substitute the composite resins. A plenty of considerations should be done on the application of them to the area under the loading and high wear has a little adverse effect on the mechanical properties on the water storage for 7 days. The further research should be needed to confirm the advantage of the compomer.

  • PDF

합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성 (The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate)

  • 조병완;박승국;박종빈;데니엘 C. 젠슨
    • 콘크리트학회논문집
    • /
    • 제17권1호
    • /
    • pp.19-25
    • /
    • 2005
  • 폐플라스틱과 fly ash를 건설분야에서 재활용하는 것은 환경오염의 방지와 함께 경제적인 건설 신소재를 개발할 수 있어 각종 환경규제 속에 대처할 수 있는 훌륭한 방안이다. 본 연구에서는 $12\%$ 탄소를 함유한 fly-ash와 폐플라스틱를 이용하여 합성경량골재를 제작하였다. 최대치수 9.5mm의 골재는 fly ash 함유량을 $0\%$, $35\%$, $80\%$ 으로 제조하였다. 팽창 점토 경량 골재와 보통 중량 골재를 비교군으로 사용하였다. 골재의 입도, 비중, 흡수율을 실험하였으며 골재종류별로 다섯 변수의 콘크리트 공시체를 제조하였다. 합성경량골재 콘크리트의 특성을 파악하기 위하여 밀도, 압축강도, 탄성계수, 할렬인장강도, 파괴인성, 파괴 에너지등을 구하였다. 또한 콘크리트 내구성을 알 수 있는 표면박리 저항성 실험을 하였다. 실험결과 압축강도와 인장강도는 보통중량 골재와 일반적인 점토 경량골재를 사용한 콘크리트 보다 합성경량골재의 경우가 더 낮았으나 상대적으로 우수한 파괴특성을 나타내었다. 합성경량골재 콘크리트는 상대적으로 낮은 압축 탄성계수를 가졌으나 높은 연성을 나타내었다. 합성경량골재의 av ash 함유량이 증가함에 따라, 콘크리트의 모든 특성이 향상되었다. fly ash 함유량 $80\%$의 합성경량 골재를 사용한 콘크리트가 표면박리 저항성이 가장 우수하였다.

Effect of fiber type and content on properties of high-strength fiber reinforced self-consolidating concrete

  • Tuan, Bui Le Anh;Tesfamariam, Mewael Gebregirogis;Hwang, Chao-Lung;Chen, Chun-Tsun;Chen, Yuan-Yuan;Lin, Kae-Long
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.299-313
    • /
    • 2014
  • Effects of polypropylene (PP) fibers, steel fibers (SF) and hybrid on the properties of highstrength fiber reinforced self-consolidating concrete (HSFR-SCC) under different volume contents are investigated in this study. Comprehensive laboratory tests were conducted in order to evaluate both fresh and hardened properties of HSFR-SCC. Test results indicated that the fiber types and fiber contents greatly influenced concrete workability but it is possible to achieve self consolidating properties while adding the fiber types in concrete mixtures. Compressive strength, dynamic modulus of elasticity, and rigidity of concrete were affected by the addition as well as volume fraction of PP fibers. However, the properties of concrete were improved by the incorporation of SF. Splitting tensile and flexural strengths of concrete became increasingly less influenced by the inclusion of PP fibers and increasingly more influenced by the addition of SF. Besides, the inclusion of PP fibers resulted in the better efficiency in the improvement of toughness than SF. Furthermore, the inclusion of fibers did not have significant effect on the durability of the concrete. Results of electrical resistivity, chloride ion penetration and ultrasonic pulse velocity tests confirmed that HSFR-SCC had enough endurance against deterioration, lower chloride ion penetrability and minimum reinforcement corrosion rate.