DOI QR코드

DOI QR Code

마이크로피브릴화 셀룰로오스(MFC)/프로폴리스 첨가 PLA 필름 제조 및 특성 분석

Manufacture and Characterization of Microfibrillated Cellulose (MFC)/Propolis-Incorporated PLA Films

  • 이연주 (경북대학교 식품공학부 식품생물공학전공) ;
  • 강혜지 (경북대학교 식품공학부 식품생물공학전공) ;
  • 김민수 (경북대학교 식품공학부 식품생물공학전공) ;
  • 정영훈 (경북대학교 식품공학부 식품생물공학전공)
  • Yeon Ju Lee (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Hye Jee Kang (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Min Su Kim (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Young Hoon Jung (School of Food Science and Biotechnology, Kyungpook National University)
  • 투고 : 2023.06.12
  • 심사 : 2023.07.04
  • 발행 : 2023.08.31

초록

The study aimed to enhance the properties of polylactic acid (PLA), a biodegradable and biocompatible substitute for fossil-based plastics. Since the applicability of PLA has been limited because of its toughness and brittleness, microfibrillated cellulose (MFC) and propolis were introduced into PLA. As a result, the PLA film with MFC/propolis showed significant improvements in mechanical strength, elongation, and storage modulus, while also experiencing a decrease in the glass transition temperature. Additionally, the presence of polyphenols in propolis led to a reduction in light transmittance in the UV wavelength range. These enhancements are attributed to MFC tightly bonding with PLA polymers, and propolis acting as a plasticizer and mediator between MFC and PLA, preventing agglomeration. These reinforced PLA films have the potential to be used in flexible packaging for light-sensitive products.

키워드

과제정보

프로폴리스를 제공해주신 씨피알에스앤티 이진경 대표님께 감사드립니다. This work was supported by the National Research Foundation of Korea (NRF) grant funded by Korea government (Ministry of Science and ICT, MSIT; No. 2020R1C1C1005251).

참고문헌

  1. Nielsen, T.D. et al. 2020. Politics and the plastic crisis: A review throughout the plastic life cycle. Wiley Interdisciplinary Reviews: Energy and Environment. 9(1): e360.
  2. 환경부. 2022. 2021년 전국 폐기물 발생 및 처리 현황.
  3. EuropeanBioplastics. 2022. Bioplastics market delopment update 2022.
  4. Rasal, R.M., Janorkar A.V. and Hirt, D.E. 2010. Poly (lactic acid) modifications. Progress in polymer science. 35(3): 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003
  5. Vieira, M.G.A. et al. 2011. Natural-based plasticizers and biopolymer films: A review. European polymer journal. 47(3): 254-263. https://doi.org/10.1016/j.eurpolymj.2010.12.011
  6. Bocque, M. et al. 2016. Petro-based and bio-based plasticizers: chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry. 54(1): 11-33. https://doi.org/10.1002/pola.27917
  7. Chieng, B. W. et al. 2013. Plasticized poly (lactic acid) with low molecular weight poly (ethylene glycol): Mechanical, thermal, and morphology properties. Journal of Applied Polymer Science. 130(6): 4576-4580.
  8. Baiardo, M. et al. 2003. Thermal and mechanical properties of plasticized poly (L-lactic acid). Journal of Applied Polymer Science. 90(7): 1731-1738. https://doi.org/10.1002/app.12549
  9. Jung, Y.H. 2017. Trends and prospects of microfibrillated cellulose in bio-industries. Microbiologyand Biotechnology Letters. 45(1): 1-11. https://doi.org/10.4014/mbl.1702.02001
  10. Siro, I. and Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 17: 459-494. https://doi.org/10.1007/s10570-010-9405-y
  11. Fadel, S.M., Hassan M.L. and Oksman, K. 2013. Improving tensile strength and moisture barrier properties of gelatin using microfibrillated cellulose. Journal of composite materials. 47(16): 1977-1985. https://doi.org/10.1177/0021998312453189
  12. Suryanegara, L., Nakagaito, A.N. and Yano, H. 2009. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology. 69(7-8): 1187-1192. https://doi.org/10.1016/j.compscitech.2009.02.022
  13. Eichers, M. et al. 2022. Biobased plasticizer and cellulose nanocrystals improve mechanical properties of polylactic acid composites. Industrial crops and products. 183: 114981.
  14. Aliotta, L. et al. 2023. Effect of biobased plasticizers, used as dispersing aids, on mechanical, rheological and thermal properties of micro fibrillated cellulose (MFC)/poly (lactic acid)(PLA) biocomposites over the time: how MFC controls the plasticizer migration? Cellulose. 30(4): 2237-2252.
  15. Belgacem, M. N. and Gandini, A. 2005. The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Composite Interfaces. 12(1-2): 41-75. https://doi.org/10.1163/1568554053542188
  16. Molinari, G. et al. 2021. Dispersion of micro fibrillated cellulose (MFC) in poly (lactic acid)(PLA) from lab-scale to semi-industrial processing using biobased plasticizers as dispersing aids. Chemistry. 3(3): 896-915. https://doi.org/10.3390/chemistry3030066
  17. Silva-Carvalho, R., Baltazar, F. and Almeida-Aguiar, C. 2015. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evidence-Based Complementary and Alternative Medicine. p. 1-29.
  18. Villalobos, K. et al. 2017. Production of starch films using propolis nanoparticles as novel bioplasticizer. 5: 189-198. https://doi.org/10.7569/JRM.2017.634109
  19. Siripatrawan, U. and Vitchayakitti, W. 2016. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids. 61: 695-702. https://doi.org/10.1016/j.foodhyd.2016.06.001
  20. Jang, J.H. et al., 2023. Development of a pH indicator for monitoring the freshness of minced pork using a cellulose nanofiber. Food Chemistry. 403: 134366.
  21. Lin, H.C., Wang B.J., and Weng Y.M. 2020. Development and characterization of sodium caseinate edible films cross-linked with genipin. Lwt. 118: 108813.
  22. Wihodo, M. and Moraru, C.I. 2013. Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. Journal of food engineering. 114(3): 292-302.
  23. Park, S.I. and Zhao, Y. 2004. Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal of agricultural and food chemistry. 52(7): 1933-1939. https://doi.org/10.1021/jf034612p
  24. Cristea, M., Ionita, D. and Iftime, M.M. 2020. Dynamic mechanical analysis investigations of PLA-based renewable materials: How are they useful? Materials. 13(22): 5302.
  25. Ruz-Cruz, M. et al. 2022. Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites. Journal of Materials Research and Technology. 18: 485-495. https://doi.org/10.1016/j.jmrt.2022.02.072
  26. Iwatake, A., Nogi, M. and Yano, H. 2008. Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology. 68(9): 2103-2106. https://doi.org/10.1016/j.compscitech.2008.03.006
  27. Yoshioka, K. et al. 2018. Self-sufficient bioethanol production system using a lignin-derived adsorbent of fermentation inhibitors. ACS Sustainable Chemistry & Engineering. 6(3): 3070-3078. https://doi.org/10.1021/acssuschemeng.7b02915
  28. Pastor, C. et al. 2010. Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydrate Polymers. 82(4): 1174-1183. https://doi.org/10.1016/j.carbpol.2010.06.051
  29. Cai, S. et al. 2016. Enhanced mechanical properties of PLA/PLAE blends via well-dispersed and compatilized nanostructures in the matrix. RSC Advances. 6(30): 25531-25540. https://doi.org/10.1039/C6RA01367H
  30. Popa, E. E. et al. 2017. Polylactic acid/cellulose fibres based composites for food packaging applications. Materiale plastice. 54: 673-677. https://doi.org/10.37358/MP.17.4.4923
  31. Abderrahim, B. et al. 2015. Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study. World Journal of Environmental Engineering. 3(4): 95-110.
  32. Kumar, A., Gupta, V., and Gaikwad, K. K. 2021. Microfibrillated cellulose from pine cone: extraction, properties, and characterization. Biomass Conversion and Biorefinery, 1-8.
  33. Sutjarittangtham, K. et al. 2014. Bactericidal effects of propolis/polylactic acid (PLA) nanofibres obtained via electrospinning. Journal of Apicultural Research. 53 (1): 109-115 https://doi.org/10.3896/IBRA.1.53.1.11
  34. Teamsinsungvon, A., Ruksakulpiwat, C. and Ruksakulpiwat Y. 2022. Effects of Titanium-Silica Oxide on Degradation Behavior and Antimicrobial Activity of Poly (Lactic Acid) Composites. Polymers. 14(16): 3310.
  35. Hajinezhad, S., Razavizadeh, B. M. and Niazmand, R. 2020. Study of antimicrobial and physicochemical properties of LDPE/propolis extruded films. Polymer Bulletin. 77: 4335-4353. https://doi.org/10.1007/s00289-019-02965-y
  36. Qiu, K. and Netravali, A. N. 2012. Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Composites Science and Technology. 72(13): 1588-1594. https://doi.org/10.1016/j.compscitech.2012.06.010
  37. Junior, L.M. et al. 2022. Effect of green propolis extract on functional properties of active pectin-based films. Food Hydrocolloids. 131: 107746.
  38. Wang, T. et al. 2022. Polyphenolic sunscreens for photoprotection. Green Chemistry. 24(9): 3605-3622. https://doi.org/10.1039/D1GC04828G
  39. da Silva, M.V. et al. 2020. A review of the potential therapeutic and cosmetic use of propolis in topical formulations. Journal of Applied Pharmaceutical Science. 10(1): 131-141. https://doi.org/10.7324/JAPS.2020.101018