• Title/Summary/Keyword: modulus of rigidity

Search Result 71, Processing Time 0.022 seconds

Effects of Structural Parameter Variations on Dynamic Responses (해석(解析)모델의 구조변수(構造變數) 변동(變動)이 동적응답에 미치는 영향(影響))

  • Park, Hyung Ghee;Lim, Boo Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.59-67
    • /
    • 1993
  • The variations of the natural frequencies and the peak response acceleration at the top of prestressed concrete reactor building due to random variability and/or model uncertainty of structural parameters are studied. The results may be used as essential input parameters in seismic probabilistic risk assessment or seismic margin assessment of the reactor building. The sensitivity test of each structural parameter is first performed to determine the most influential parameter upon the natural frequency of structure model. Then Monte Carlo simulation technique is applied to evaluate the effect of parameter variation on the natural frequencies and the peak response acceleration. The acceleration time history is obtained by direct integration scheme. As the study results, it is found that the fundamental natural frequency and the peak response acceleration at the top of the building are most strongly affected by Young's modulus among the structural parameters, in which the value of mean plus one standard deviation obtained by probabilistic approach deviates up to about (+)12% from the result of deterministic method. Considering the uncertainty of flexural rigidity, the structural responses vary in range of (-)4%~(+)14%.

  • PDF

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.

Effective Stiffness of Composite Beams Considering Shear Slip Effects (전단슬립 효과를 고려한 합성보의 유효강성)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.671-682
    • /
    • 2004
  • This study investigated the effects of a shear slip on the deflection of steel-concretecomposite beams with partial shear interaction. Under the guidance of various current design codes, this deflection was related to the strength of shear connectors in the composite beams. In this paper, a shear connector stiffness based on exact solutions, regardless of loading conditions, was developed. The equivalent rigidity of composite beams that considered three different loading types was first derived, based on equilibrium and curvature compatibility, from which a general formula accounting for slips was developed. To validate this approach, the predicted maximum deflection under the proposed method was compared against currently used equations to calculate beam effective stiffness (AISC)Nie's equations, which have recently been proposed. For typical beams that were used in practice, shear slips might result in stiffness reduction of up to 18% for short-span beams. For full composite sections, the effective section modulus with the AISC specifications was larger than that of the present study, which meant that the specifications were not conservative. For partial composite sections, the AISC predictions were more conservative than those in the present study.

A Study on Shear Strength Test for FRP Girder of Filled Concrete (콘크리트 충진 FRP 거더의 전단재하 실험에 관한 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-Ok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2008
  • Fiber Reinforced Polymer, FRP has a light weight, a high tensile strength based on design, non-electronic, non-magnetic, and rust-resistant feature, etc and many researches are being conducted recently on FRP in the construction area. Among them, GFRP (Glass Fiber Reinforced Polymer) is excellent in price competitiveness and is widely being used. However, since GFRP has a relative low modulus of elasticity and causes excessive deflection, the section must be large to be used as a structural component and an investigative review must be carried out in design to set the limit for deflection by the use load. Therefore, in order to solve the mentioned technical problems, this study suggested a section of a module form such that application of a large-scale section is possible. Also, to secure the low rigidity of FRP, this study developed a new FRP+ concrete composite girder form that confined the concrete. To identify the structural movement of the developed FRP+ concrete composite girder, shear strength test was carried out.

FINITE ELEMENT ANALYSIS OF MAXILLARY CENTRAL INCISORS RESTORED WITH VARIOUS POST-AND-CORE APPLICATIONS (여러가지 post-and-core로 수복된 상악 중절치의 유한요소법적 연구)

  • Seo, Min-Seock;Shon, Won-Jun;Lee, Woo-Cheol;Yoo, Hyun-Mi;Cho, Byeong-Hoon;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.324-332
    • /
    • 2009
  • The purpose of this study was to investigate the effect of rigidity of post core systems on stress distribution by the theoretical technique, finite element stress-analysis method. Three-dimensional finite element models simulating an endodontically treated maxillary central incisor restored with a zirconia ceramic crown were prepared and 1.5 mm ferrule height was provided. Each model contained cortical bone, trabecular bone, periodontal ligament, 4 mm apical root canal filling, and post-and-core. Six combinations of three parallel type post (zirconia ceramic, glass fiber, and stainless steel) and two core (Paracore and Tetric ceram) materials were evaluated, respectively. A 50 N static occlusal load was applied to the palatal surface of the crown with a $60^{\circ}$angle to the long axis of the tooth. The differences in stress transfer characteristics of the models were analyzed. von Mises stresses were chosen for presentation of results and maximum displacement and hydrostatic pressure were also calculated. An increase of the elastic modulus of the post material increased the stress, but shifted the maximum stress location from the dentin surface to the post material. Buccal side of cervical region (junction of core and crown) of the glass fiber post restored tooth was subjected to the highest stress concentration. Maximum von Mises stress in the remaining radicular tooth structure for low elastic modulus resin core (29.21 MPa) was slightly higher than that for high elastic modulus resin core (29.14 MPa) in case of glass fiber post. Maximum displacement of glass fiber post restored tooth was higher than that of zirconia ceramic or stainless steel post restored tooth.

Investigation of Post-seismic Sites Using Local Seismic Tomography in the Korean Peninsula (지진 토모그래피를 이용한 한반도의 과거진원지역의 특성 연구)

  • Kim So-Gu;Bae Hyung-Sub
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.111-128
    • /
    • 2006
  • Three dimensional crustal structure and source features of earthquake hypocenters on the Korean peninsula were investigated using P and S-wave travel time tomography. The main goal of this research was to find Vp/Vs anomalies at earthquake hypocenters as well as those of crustal structure of basins and deep tectonic settings. This allowed fer the extrapolation of more detailed seismotectonic force from the Korean peninsula. The earthquake hypocenters were found to have high Vp/Vs ratio discrepancies (VRD) at the vertical sections. High V/p/Vs ratios were also found in the sedimentary basins and beneath the Chugaryong Rift Zone (CRZ), which was due to mantle plume that subsequently solidified with many fractures and faults which were saturated with connate water. The hypocenters of most earthquakes were found in the upper crust for Youngwol (YE), Kyongju (KE), Hongsung (HE), Kaesong (KSE), Daekwan (DKE), and Daehung (DHE) earthquakes, but near the subcrust or the Moho Discontinuity for Mt. Songni (SE), Sariwon (SRE) and Mt. Jiri (JE) earthquakes. Especially, we found hot springs of the Daekwan, Daehung and Unsan regions coincide with high VRD. Also, this cannot rule out the possibility that there are some partial meltings in the subcrust of this region. High VRD might indicate that many faults and fractures with connate water were dehydrated when earthquakes took place, reducing shear modulus in the hypocenter areas. This is can be explained by due to the fact that a point source which is represented by the moment tensor that may involve changes in volume, shear fracture, and rigidity. High Vp/Vs ratio discrepancies (VRD) were also found beneath Mt. Backdu beneath 40 km, indicating that magma chamber existed beneath Mt. Backdu is reducing shear modulus of S-wave velocity.

Study of Bio-absorbability and Bio-compatibility of Poly-L-lactic-acid Implant in Dogs (개에서 Poly-L-lactic-acid 이식물의 생분해성과 생체적합성에 관한 연구)

  • Park, Po-Young;Kim, Young-Ki;Bahk, Jong-Yoon;Park, Joung-Man;Koh, Phil-Ok;Chang, Hong-Hee;Lee, Hee-Chun;Lee, Hyo-Jong;Yeon, Seong-Chan
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.182-191
    • /
    • 2007
  • Bioabsorbable devices have been utilized and experimented in many aspects of orthopaedic surgery. Depending upon their constituent polymers, these materials can be tailored to provide sufficient rigidity to allow bone healing, retain mechanical strength for certain period of time, and then eventually begin to undergo degradation. The objective of this study was to estimate extent in which Poly-L-latic acid (PLLA) implants had bioabsorbability and biocompatibility with bone and soft tissue in dogs and also to develop bioabsorbable, biocompatible materials with the appropriate strength and degradation characteristics to allow for regular clinical use for treating orthopedic problems in humans as well as animals. Eighteen dogs were used as experimental animals and were inserted two types of PLLA implants. PLLA rods were inserted into subcutaneous tissue of back or the abdomen wall. And the rods were tested for material properties including viscosity, molecular weight, melting point, melting temperature, crystallinity, flexural strength, and flexural modulus over time. PLLA screws were inserted through cortical bone into bone marrow in the femur of the dogs and stainless steel screw was inserted in the same femur. Radiographs were taken after surgery to observe locations of screw. Histological variations including cortical bone response, muscular response, bone marrow response were analyzed over the time for 62weeks. The physical properties of PLLA rods had delicate balances between mechanical, thermal and viscoelastic factors. PLLA screws did not induce any harmful effects and clinical complications on bone and soft tissue for degradation period. These results suggest that PLLA implants could be suitable for clinical use.

The Physical Property of the Structural Color Yarn and Fabric for Emotional Garment Using Biomimetic Technology (생체모방기술을 응용한 감성의류용 구조발색사와 직물의 물성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • This study investigated the structural coloration and fabric hand of the caustic reduced fabrics for emotional garment using structural color yarns, which was spun by 37 alternating nylon and polyester layers capable of producing basic colors using biomimetic technology. The colorations of the three kinds of structural color yarns were confirmed using multi angle spectro-photometer, and their triangular cross sections composed with 37 alternating nylon and polyester layers were measured using SEM and were discussed with layer length in relation with coloration and spinning conditions were also set up. The apparent color difference and reflectance of the three kinds of fabrics with different density and weave pattern were analysed as ranging from 400nm to 700nm. The optimum fabric structural design which is made by warp and weft densities(194ends/in ${\times}$ 105picks/in) and caustic reduction condition by $100^{\circ}C$ temperature and 60minutes with NaOH, 20g/l solution were decided through analysis of the mechanical properties and fabric hands of these three kinds of fabrics treated with 3 kinds of the caustic reduction conditions. And it was shown that the rate of caustic reduction was increased from 13% to 23% with increasing temperature and time of caustic reduction. The extensibility, bending rigidity and shear modulus of caustic reduction treated fabrics were decreased by treatment of caustic reduction, on the other hand fabric compressibility was increased. And it was shown that the hand value of specimen number one which was treated with temperature $100^{\circ}C$ and time 60minute was the best and the hand of this fabric was better than that of Morpho $fabric^{(R)}$ made by Teijin co. Japan.

  • PDF

Stress Relaxation Coefficient Method for Concrete Creep Analysis of Composite Sections (합성단면의 콘크리트 크리프 해석을 위한 이완계수법)

  • Yon, Jung-Heum;Kyung, Tae-Hyun;Kim, Da-Na
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • The concrete creep deformation of a hybrid composite section can cause additional deformation of the composite section and the stress relaxation of pre-compressive stress on the concrete section due to partial restraint of the deformation. In this study, the stress relaxation coefficient method (SRCM) is derived for simple analysis of complicate hybrid or composite sections for engineering purpose. Also, an equation of the stress relaxation coefficient (SRC) required for the SRCM is proposed. The SRCM is derived with the parameters of a creep coefficient, section and loading properties using the same method as the constant-creep step-by-step method (CC-SSM). The errors of the SRCM is improved by using the proposed SRC equation than the average SRC's which were estimated from the CC-SSM. The root mean square error (RMSE) of the SRCM with the proposed SRC equation for concrete with creep coefficient less than 3 was less than 1.2% to the creep deformation at the free condition and was 3.3% for the 99% reliability. The proposed SRC equation reflects the internal restraint of composite sections, and the effective modulus of elasticity computed with the proposed SRC can be used effectively to estimate the rigidity of a composite section in a numerical analysis which can be applied in analysis of the external restrain effect of boundary conditions.

Rheological properties of dental resin cements during polymerization (치과용 레진 시멘트의 유변학적 성질)

  • Lee, Jae-Rim;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • Purpose: The purpose of this study was to observe the change of viscoelastic properties of dental resin cements during polymerization. Materials and methods: Six commercially available resin cement materials (Clearfil SA luting, Panavia F 2.0, Zirconite, Variolink N, RelyX Unicem clicker, RelyX U200) were investigated in this study. A dynamic oscillation-time sweep test was performed with AR1500 stress controlled rheometer at $32^{\circ}C$. The changes in shear storage modulus (G'), shear loss modulus (G"), loss tangent (tan ${\delta}$) and displacement were measured for twenty minutes and repeated three times for each material. The data were analyzed using one-way ANOVA and Tukey's post hoc test (${\alpha}$=0.05). Results: After mixing, all materials demonstrated an increase in G' with time, reaching the plateau in the end. RelyX U200 demonstrated the highest G' value, while RelyX Unicem (clicker type) and Variolink N demonstrated the lowest G' value at the end of experimental time. Tan ${\delta}$was maintained at some level and reached the zero at the starting point where G' began to increase. The tan ${\delta}$and displacement of the tested materials showed similar pattern in the graph within change of time. The displacement of all 6 materials approached to zero within 6 minutes. Conclusion: Compared to other resin cements used in this study, RelyX U200 maintained plastic property for a longer period of time. When it completed the curing process, RelyX U200 had the highest stiffness. It is convenient for clinicians to cement multiple units of dental prostheses simultaneously.