• Title/Summary/Keyword: moduli of curves

Search Result 43, Processing Time 0.021 seconds

A Damage Model for Predicting the Nonlinear Behavior of Rock (암석의 비선형 거동해석을 위한 손상모델 개발)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.83-97
    • /
    • 2002
  • An experimental model which considers post-peak behaviors and pre-peak damage characteristics representing changes of elastic moduli in each damage level was developed. From experiments, some damage thresholds of rocks were determined, and regression analyses were carried out in order to represent changes of elastic moduli in each damage level as functions of confining pressure. In addition, it was intended to simulate post-peak behaviors with Hoek-Brown constants, $m_r\;and\;s_r$ for post-failure. The developed experimental model was implemented into $FLAC^{2D}$ by a FISH function. From results of parametric studies on Hoek-Brown constants for post-peak, it was revealed that uniaxial compressive strength more highly depends upon $s_r$, although it depends on both $m_r\;and\;s_r$. It was also shown that the post-peak slopes of stress-stain curves depend mainly on $m_r$. When the optimum models obtained from parametric studies were applied to numerical analysis, they predicted maximum strengths obtained from experiments and well simulated stiffness changes due to damage levels.

Dynamic Shear Modulus and Damping Ratio of Soft Clay (연약점토의 동력학적 전단탄성계수 및 감쇠비)

  • 하광현
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 1986
  • Considering the effects of confining pressure, initial shear stress, cyclic stress ratio and number of loading cycles, cyclic triaxial tests are carried out to clarify the soil dynamic properties such as shear modulus and value of material damping of clay under undrained cyclic loading conditions. The results show that no obvious dependency on initial shear stress and effective confining stress are recognized in the shear modulus and damping ratio plotted versus strain. However, the shear modulus decreases and the damping ratio increases with increasing axial strain. When compared with others, it is also revealed that the shear moduli are distributed within the range curves obtained using empirical equations derived by Marcuson et al. (3) and Kokusho et al. (4), and damping ratios are distributed between the curves obtained by Kokusho et al. (4) and Ishihara et al. (9).

  • PDF

Fiber-Optic Pressure Sensor Using a Rugate-Structured Porous Silicon Diaphragm Coated with PMMA (PMMA가 코팅된 주름 구조를 갖는 다공성규소 격판을 이용한 광섬유 압력센서)

  • Lee, Ki-Won;Cho, So-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.227-232
    • /
    • 2013
  • In this research, fiber-optic pressure sensors were fabricated with rugate-structured porous silicon (RPS) diaphragms coated with PMMA (Polymethyl-Methacrylate). The reflectance spectrum of the PMMA/RPS diaphragm was almost the same as that of uncoated RPS diaphragm. However the mechanical strength of the PMMA/RPS diaphragm increased more than that of the uncoated diaphragm. As a result, the fiber-optic sensor fabricated with PMMA/RPS diaphragm could successfully detect more high pressure difference without diaphragm damage than the highest detectable pressure difference of the sensor with normal RPS diaphragm. The response data of the fiber-optic sensor recorded as a function of pressure difference were fitted by theoretical curves. During this process, elastic moduli of the used PMMA/RPS diaphragms were obtained numerically. The dynamic response properties of the fiber-optic sensor were also investigated under continuous variation of the pressure difference conditions.

Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition

  • Lee, Hoon;Kim, Kyung-min;Kim, Ju-Seong;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.352-359
    • /
    • 2020
  • The effects of hydrogen precipitation on the mechanical properties of Zircaloy-4 and Zirlo alloys were examined with uniaxial tensile tests at room temperature and at 400 ℃ and accompanying microstructural changes in the Zircaloy-4 and Zirlo alloy specimens were discussed. The elastic moduli of Zircaloy-4 and Zirlo alloys decreased with increasing hydrogen concentrations. Yield strengths of both materials tended to decrease gradually. The reductions of yield stress seems to be caused by the dissipation of yield point phenomena shown in stress-strain curves. Ultimate tensile strengths (UTS) of Zircaloy-4 and Zirlo slightly increased at low hydrogen contents, and then decreased when the concentrations exceeded 500 and 700 wppm, respectively. Uniform elongations were stable until 600 wppm and drops to 0% around 1400 wppm at room temperature.

Torsion Pendulum for Monitoring Curing Behavior of an Epoxy Resin under Hydrostatic Pressure

  • Lee, Jong Keun;Pae, K.D.
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.395-402
    • /
    • 1993
  • A newly designed torsion pendulum operating at high pressures and various temperatures has been constructed. The High Pressure Torsion Pendulum(HPTP) is capable of containing gaseous pressure to 690MPa(100, 000psi) and operating at temperatures from-$100^{\circ}C$ to $300^{\circ}C$. A glass fiber braid is installed between two sample holders to accommodateliquid samples. The HPTP was fully automated and computerized using an IBM-AT personal computer to control initiation of oscillation, collect digitized data, and calculate the shear and loss moduli from damped curves, The curing process of an epoxyamine(DGEBA-DDS) system under various pressures up to 124 MPa(18, 000 psi) at $150^{\circ}C$has been successfully carried out and some results are presented.

  • PDF

Non-Linear Behavior Analysis for Stratospheric Airship Envelope (성층권 비행선 기낭 막재료에 대한 비선형 거동 연구)

  • Suh Young Wook;Woo Kyeongsik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, geometrically non-linear finite element analyses were performed to study the mechanical behavior of the material system of the envelope of stratospheric airships. The microstructure of the load­bearing plain weave layer was identified and modeled. The Updated Lagrangian formulation was employed to consider the geometric non-linearity as well as the induced structural non-linearity for the fiber tows. The stress-strain behavior was predicted and the effective elastic modulus was calculated by numerical experiments. It was found the non-linear stress-strain curves were largely different from those by linear analysis with much higher non-linear elastic moduli. The difference was more distinguishable when the tow waviness was smaller.

  • PDF

AN EXPERIMENTAL STUDY ON THE RESIDUAL STRESS AND BOND STRENGTH OF CERAMO-METAL SYSTEM (치과도재용(齒科陶材用) 합금(合金)과 도재간(陶材間)의 잔류응력(殘溜應力) 및 결합강도(結合强度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Kim, Gi-Jin;Bae, Tae-Seong;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.67-84
    • /
    • 1991
  • This study was carried out to investiagate the residual stress caused by the mismatch of thermal expansion and the bond failure resistance of alloy-porcelain specimens. The thermal expansions of alloys and porcelains were measured by using a straight push-rod dilatometer. Porcelain glass transition temperatures, thermal expansion coefficients, and thermal compatibility indices were derived from length-versus-temperature curves. Strain gauges were used to experimentally determine the Young's moduli of porcelains, the residual stresses of porcelain surface, and tensile bond strengths of the specimens of simulated porcelain metal crown. The obtained results were as follows: 1. The coefficients of thermal expansion for alloys were the minimum of $13.53\mu/^{\circ}C$ and the maximum of $20.11\mu/^{\circ}C$ in the range of $100\sim600^{\circ}C$ and those for porcelains were the minimum of $7.72\mu/^{\circ}C$ and the maximum of $31.24\mu/^{\circ}C$ in the range of $100\sim500^{\circ}C$. 2. The glass transition temperature of porcelains exhibited the same value without my relation to the healing rate, and the thermal disharmony of porcelain and alloy was more affected by porcelains than by the alloys. 3. The Young's moduli of body porcelains were larger than those of opaque porcelains(P<0.01) 4. It seemed that the residual stresses of porcelain surfaces in the porcelainalloy systems were more affected by porcelains than by alleys. 5. The bond strengths of the procelain-base metal alloy systems were larger than those of the porcelain-precious metal alloy systems. The fracture strengths of porcelain surfaces showed significant difference between porcelains (P<0.05).

  • PDF

Dynamic Deformation Characteristics of Fiber Reinforced Soils (섬유혼합토의 동적물성변형특성)

  • Jung, Sung-Yong;Kim, Dae-Il;Park, Chul-Soo;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.968-976
    • /
    • 2004
  • In the paper, deformation characteristics of fiber-mixed-soils, mixed polypropylene staple fibers of 0.3% fiber content with sands of various gradation, and their effectiveness of reinforcement were evaluated. A series of Resonant Column tests were performed with specimens prepared with varying Uniformity Coefficient and constant Curvature Coefficient. Maximum shear moduli 01 fiber-mixed-soils were increased by up to 30% and modulus reduction was also restrained in nonlinear range. Normalized shear modulus reduction curves of fiber-mixed-soils shift close to the upper limit of Seed curd Idriss's curves and are located within narrower band than those of unmixed soils, which proves the effectiveness on stiffness increment by reinforcing soils with fibers.

  • PDF

Application of Modified Ramberg-Osgood Model for Master Curve of Asphalt Concrete (아스팔트 콘크리트 메스터 극선에 대한 수정 Ramberg-Osgood 모델 적용)

  • Kweon, Gi-Chul
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 2008
  • The dynamic moduli of asphalt concrete are very important for the analysis and the design of asphalt pavement systems. The dynamic modulus master curve is usually represented by a sigmoidal function. The Ramberg-Osgood model was widely used for fitting of normalized modulus reduction curves with strain of soils in soil dynamic fields. The master curves were obtained by both sigmoidal functions and modified Ramberg-Osgood model for the same dynamic modulus data set, the fitting abilities of both methods were excellent. The coefficients in sigmoidal function are coupled. Therefore, it is not possible to separate the characteristics of the master curve with absolute value and shape. However, the each fitting coefficient in the Ramberg-Osgood model has a unique effect on the master curve, and the coefficients are not coupled with each other.

  • PDF

Rheological Properties of Hot Pepper-soybean Pastes Mixed with Acetylated Starches

  • Choi, Su-Jin;Chang, Hak-Gil;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.780-786
    • /
    • 2008
  • Effect of acetylated starches (acetylated rice starch and acetylated tapioca starch) on rheological properties of hot pepper-soybean paste (HPSP) at different mixing ratios of rice flour (RF) and acetylated starch (AS) (10/0, 9/1, 8/2, and 7/3) was evaluated in steady and dynamic shear. All HPSP samples at $25^{\circ}C$ exhibited shear-thinning (n=0.31-0.36) and thixotropic behavior with high yield stresses and their steady flow curves were well described by power law and Casson models. The presence of AS resulted in the decrease in consistency index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$), and their predominant decreases were noticed at higher ratio of RF to AS (7/3 ratio). Arrhenius temperature relationship represents variation with temperature in the range of $5-35^{\circ}C$ with the high determination coefficients ($R^2=0.97-0.99$). Dynamic moduli (G', G", and ${\eta}^*$) values of HPSP samples mixed with AS were lower than those of HPSP with no added AS within the experimental range of frequency (0.63-62.8 rad/sec). Steady and dynamic shear rheological properties of HPSP samples seem to be greatly influenced by the presence of acetylated starch.