• Title/Summary/Keyword: module UPS

Search Result 27, Processing Time 0.064 seconds

A Master and Slave Control Strategy for Parallel Operation of Three-Phase UPS Systems with Different Ratings (다른 정격용량을 가진 3상 UPS 시스템의 병렬운전을 위한 주종제어 기법)

  • 이우철;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.341-349
    • /
    • 2004
  • A parallel operation of Uninterruptible Power Supply(UPS) systems is used to increase power capacity of the system or to secure higher reliability at critical loads. In the conventional parallel operation, the load-sharing control to maintain the current balance is the most important, since the load-sharing is very sensitive to discord between components of each module, amplitude/phase difference, line impedance, output LC filter, and so on. To solve these problems various control algorithms are researching. However, these methods cannot apply to the different ratings of UPS. In the case, master and slave control algorithm for parallel operation is adequate. However, if the UPS ratings are different, the value of passive filters L, C is different, and it affects the sharing of current. This paper presents general problems of conventional parallel operation systems, and control strategy for parallel operation with different ratings. The validity of the proposed control strategy is investigated through simulation and experiment in the parallel operation system with two 3-phase UPS systems.

Independent Load Sharing of UPS systems connected in Parallel (병렬운전 UPS 시스템의 독립 부하 분담 특성)

  • Byun, Y.B.;Koo, T.G.;Joe, K.Y.;Kim, D.H.;Kim, C.U.;ANANIEV, Igor P.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2546-2548
    • /
    • 1999
  • This paper describes characteristics of independent load sharing of parallel UPS systems and proposes a method of control which does not require control interconnections at each UPS system and compensates for line impedance. Simulation results of a two-module UPS system with different power latins and line impedance have demonstrated the feasibility of the proposed control scheme in load sharing.

  • PDF

Battery Balancing Algorithm for Serial Multi-Module UPS System (직렬 멀티모듈 UPS 시스템의 배터리 밸런싱 알고리즘)

  • Park, Jung-Min;Lee, Soon-Ryung;Jeon, Jin-Yong;Yeo, Tae-Jung;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.148-149
    • /
    • 2014
  • 본 논문에서는 직렬 멀티 모듈형 무정전 전원 장치(UPS, Uninterruptible power supply) 시스템의 배터리 밸런싱 알고리즘을 제안하였다. 제안한 알고리즘은 배터리의 고유 특성에 의한 SOC(State of charge) 차이를 최소화시키기 위해 각 배터리의 출력전력 제어를 함으로써 배터리 가용 용량을 높인다. 직렬로 연결된 UPS 모듈의 배터리 전압을 이용하여 전력 지령을 계산하고 이를 바탕으로 각 UPS 모듈의 출력전력을 제어한다. 제안한 배터리 밸런싱 알고리즘의 타당성은 수학적 분석 및 시뮬레이션을 통해 검증하였다.

  • PDF

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

Control Algorithm of Phase Synchronization in Single-Phase Serial UPS Module (단상 직렬 UPS 모듈의 위상동기화 제어 알고리즘)

  • Baek, Seung-Ho;Lee, Soon-Ryung;Lee, Taek-Ki;Won, Chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.61-62
    • /
    • 2015
  • 본 논문에서는 단상 UPS 모듈을 직렬로 연결 시 모듈간의 위상을 동기화하는 제어 알고리즘을 제안한다. 단상 직렬 모듈 UPS 시스템을 구성할 때, 각 모듈의 위상이 동기화 되어 있지 않는다면 직렬 연결된 출력단을 통해 부하에 불안정한 전력을 공급하게 된다. 따라서 직렬 구성으로 각 모듈의 출력전압 위상을 동기화하여 안정적인 출력전압 제어가 필요하다. 기존에는 CAN통신을 이용했지만 본 논문에서는, Master, Slave 모듈의 PLL 기법을 이용한 순차적인 제어를 통해 위상을 동기화시킬 수 있는 제어 알고리즘을 제안한다. 제안하는 제어 알고리즘은 시뮬레이션을 통해 타당성을 검증하였다.

  • PDF

SOC Balancing Control to Improve Battery Efficiency for Parallel UPS Module System (병렬 UPS 모듈용 배터리의 효율 향상을 위한 SOC 밸런싱 제어)

  • Lee, Kanghyun;Lee, Soon-Ryung;Baek, Seung-Ho;Lee, Jong-Young;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.165-166
    • /
    • 2016
  • 본 논문에서는 병렬 UPS 모듈용 배터리의 효율 향상을 위해 추가적인 밸런싱 회로의 구성 없이 SOC 밸런싱을 수행하는 제어 기법을 제안한다. 각각의 UPS 모듈은 배터리와 인버터로 구성되어 있으며 출력단이 병렬 구조로 이루어져 있다. 배터리간 SOC 불균형은 전체 시스템의 효율을 저하시키는데, 본 논문에서는 시스템의 효율을 향상시키기 위하여 각각의 인버터의 출력을 제어하여 배터리 SOC간의 불균형을 제어하는 제어 기법을 제안한다. 제안하는 SOC 밸런싱 제어 방법은 시뮬레이션을 통해 검증하였다.

  • PDF

Development of Uninterruptible Power Supply with Voltage Sag Restorer Function (순시전압강하 보상 기능을 가지는 무정전전원공급장치의 개발)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • In this paper, UPS, with a built-in instantaneous sag drop compensation features, was developed to improve performance. The improved UPS, using instantaneous moving average method, compensates by quickly measuring the voltage and series inverter of half-bridge type, using line-interactive method that links with the voltage of the battery and power source, was developed. In addition, by developing a parallel inverter that uses a high-efficiency PWM switching method, overall UPS system was enhanced. To verify the performance of the proposed algorithm, single-phase 5[kVA] UPS systems were designed and the experimental system was constructed. The low-cost type of Cortex-M3 module CPU STM32F103R8T6 (32[bit]) is attached and the switching time of mode transfer was set within 4 [ms]. THD of the linear load operates in less than 3[%], and the stability of the output voltage operates in approximately ${\pm}2[%]$ range. The superior performance of the operations was confirmed with the system set as above.

Smart Power Management Using RTOS-based Uninterruptable Generator Supply

  • Lee, Chulju;Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2016
  • An uninterruptible power supply (UPS) allows small companies and domestic users to cope with power outages; but existing designs lack flexibility of control and require expensive battery maintenance, with a cost proportional to the outage compensation time. We combine a compact synchronous generator with a battery, with 10% of the capacity that would otherwise be required, to obtain a UPS with reduced maintenance costs for the same performance. Any UPS must respond immediately to a power loss, and our uninterruptible generator supply (UGS) is therefore built around real-time scheduling of its internal operations; this also makes it suitable for integration into the industrial gateway. The UGS is based on a real-time operating system, with an integrated wireless module providing connectivity to a web server, for monitoring and management, which can be performed remotely on a mobile device.

Feed-Forward Compensation Technique in Stationary Reference Frame for the Enhanced Disturbance Rejection Performance in Parallel Operation of Double-Conversion UPSs (이중 변환 UPS의 병렬 운전 시 외란 저감 성능 향상을 위한 정지 좌표계 상의 전향 보상 기법)

  • Ryu, Hyo-Jun;Yoon, Young-Doo;Mo, Jae-Sung;Choi, Seung-Cheol;Woo, Tae-Gyeom
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.367-375
    • /
    • 2022
  • Generally, a proportional-resonant controller is used to eliminate steady-state errors during the voltage-current control of a double-conversion uninterruptible power supply (UPS) in a stationary reference frame. Additionally, the feed-forward control compensating for the load current, which can be considered a disturbance of the voltage controller, can be used to improve the disturbance rejection performance. However, during the parallel operation of UPSs, circulating current can occur between UPS modules when performing both feed-forward control and droop control because feed-forward control reduces the circulating current impedance. This study proposes a feed-forward compensation technique that considers the impedance of circulating current. An additional feed-forward compensation technique is developed to enhance the disturbance rejection performance. The validity of the proposed feed-forward compensation technique is verified by the experiment results of the parallel operation of a 500 W double-conversion UPS module.

Design of the Fuel Cell Powered Line-Interactive UPS System (연료전지 시스템을 이용한 Line-Interactive 방식의 무정전 전원 공급 장치의 설계)

  • Choi, Woo-Jin;Jeon, Hee-Jong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.205-212
    • /
    • 2004
  • In this paper the design of a 1-[KVA] fuel cell powered line-interactive UPS system employing modular (fuel cell & DC/DC converter) blocks is proposed. The proposed system employs the two fuel cell modules along with suitable DC/DC converters and these modules share the DC-Link of the DC/AC inverter. A supercapacitor module is also employed to compensate for the instantaneous power fluctuations and to overcome the slow dynamics of the fuel processor. The energy stored in the supercapacitor can also be utilized to handle the overload conditions for a short time period. Due to the absence of batteries, the system satisfies the demand for an environmentally friendly and dean source of the energy. A complete design example illustrating the amount of hydrogen storage required for 1hr power outage, and sizing of supercacpacitor for transient load demand is presented for a 1-[KVA] UPS.