• Title/Summary/Keyword: modulation signals

Search Result 634, Processing Time 0.027 seconds

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

A GNSS Code Tracking Scheme Based in Slope Difference of Correlation Outputs (상관 함수의 기울기 차에 기반한 GNSS의 부호 추적 기법)

  • Yoo, Seung-Soo;Yoo, Seung-Hwan;Chong, Da-Hae;Ahn, Sang-Ho;Yoon, Seok-Ho;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6C
    • /
    • pp.505-511
    • /
    • 2008
  • The global navigation satellite system (GNSS) is using a direct sequence/spread spectrum (DS/SS) modulation. In order to recover the information data, the DS/SS system first performs a two-step synchronization process: acquisition and tracking. The acquisition process adjusts the phase difference between the received and locally generated acquisition sequences within ${\pm}T_c/2$ or less, where $T_c$ is the chip period. The tracking process performs fine synchronization. In this paper, we focus on the tracking issue. The single delta delay locked loop($\Delta$-DLL) is the optimal tracking scheme for a GNSS in the absence of multipath signals, where $\Delta$ means the spacing between the early and late correlation time offset. In the multipath environments, however, the $\Delta$-DLL suffers from huge estimation bias(denoted by $\beta$) caused by distorted correlation values. Although some modified schemes such as a $\Delta$-DLL with a narrow $\Delta$ and a double delta DLL (${\Delta}^{(2)}$-DLL) were proposed to reduce the estimation bias, they cannot remove the estimation bias completely and need more accurate acquisition process. This paper proposes a novel tracking scheme that can dramatically reduce the estimation bias, using the maximum slope change among the correlation outputs.

A Compressed Sensing-Based Signal Detection Technique for Generalized Space Shift Keying Systems (일반화된 공간천이변조 시스템에서 압축센싱기술을 이용한 수신신호 복호 알고리즘)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1557-1564
    • /
    • 2014
  • In this paper, we propose a signal detection technique based on the parallel orthogonal matching pursuit (POMP) is proposed for generalized shift space keying (GSSK) systems, which is a modified version of the orthogonal matching pursuit (OMP) that is widely used as a greedy algorithm for sparse signal recovery. The signal recovery problem in the GSSK systems is similar to that in the compressed sensing (CS). In the proposed POMP technique, multiple indexes which have the maximum correlation between the received signal and the channel matrix are selected at the first iteration, while a single index is selected in the OMP algorithm. Finally, the index yielding the minimum residual between the received signal and the M recovered signals is selected as an estimate of the original transmitted signal. POMP with Quantization (POMP-Q) is also proposed, which combines the POMP technique with the signal quantization at each iteration. The proposed POMP technique induces the computational complexity M times, compared with the OMP, but the performance of the signal recovery significantly outperform the conventional OMP algorithm.

Contactless Electroreflectance Spectroscopy of In0.5(Ga1-xAlx)0.5P/GaAs Double Heterostructures (In0.5(Ga1-xAlx)0.5P/GaAs 이중 이종접합 구조의 Contactless Electroreflectance에 관한 연구)

  • Kim, Jeong-Hwa;Jo, Hyun-Jun;Bae, In-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.134-140
    • /
    • 2010
  • We have investigated the contactless electroreflectance (CER) properties of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$/GaAs double heterostructures grown by metal-organic chemical vapour deposition (MOCVD). The CER measurements on the sample were studied as a function of temperature, modulation voltage ($V_{ac}$), and dc bias voltage ($V_{bias}$). Five signals observed at room temperature are related to the GaAs, $In_{0.5}Ga_{0.5}P$, $In_{0.5}(Ga_{0.73}Al_{0.27})_{0.5}P$, $In_{0.5}(Ga_{0.5}Al_{0.5})_{0.5}P$, and $In_{0.5}(Ga_{0.2}Al_{0.8})_{0.5}P$ transitions, respectively. From the temperature dependence of CER spectrum, the Varshni coefficients and broadening parameters were determined and discussed. In addition, we found that the behavior of the CER amplitude for the reverse bias is larger than that of the forward.

Induction of Apoptosis by Bee Venom in A549 Human Lung Epithelial Cancer Cells through Modulation of Bcl-2 and IAP Family and Activation of Caspases (Bcl-2 및 IAP family의 발현 변화와 caspase 활성을 통한 봉독의 인체폐암세포 apoptosis 유도)

  • Woo, Hyun-Joo;Kim, Hyun-Joong;Hong, Su-Hyun;Hong, Sang-Hoon;Choi, Byung-Tae;Lee, Yong-Tae;Park, Dong-Il;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1596-1600
    • /
    • 2007
  • Bee venom is used to treat inflammatory diseases in Korean traditional medicine and has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in bee venom-induced apoptosis are still uncharacterized in human lung cancer cells. In the present study, we investigated the effects of bee venom on the apoptosis of A549 human lung epithelial cancer cells. Treatment of bee venom inhibited the cell viability and induced apoptosis in a concentration-dependent manner as measured by hemocytometer counts, fluorescence microscopy and flow cytometry analysis. Bee venom-induced apoptosis in A549 cells was associated with a marked inhibition of anti-apoptotic Bcl-2 expression without significant changes in the levels of Bax and Bcl-xL. Bee venom treatment also inhibited the levels of IAP family members such as cIAP-1 and cIAP-2 and induced the proteolytic activation of caspase-3 and caspase-9. Although further studies are needed, the present results suggest that apoptotic signals evoked by bee vemon in A549 cancer cells may converge caspases activation through a down-regulation of Bcl-2 rather than an up-regulation of Bax. These findings provide important insights into the possible molecular mechanisms of the anti-cancer activity of bee vemon in human cancer cells.

The Effects of ATP - sensitive $K^+$ Channel on the Muscle Fatigue in Mouse Skeletal Muscle Cell (골격근 세포에서 ATP-의존성 $K^+$통로의 활성화가 근피로에 미치는 영향)

  • Koo Hyun-Mo;Nam Ki-Won;Kim Suck-Bum;Lee Sun-Min;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Excitation-contraction coupling in skeletal muscle is process by which depolarization of the muscle fiber membrane, elicited by a nerve action potential, triggers the release of $Ca^{2+}$ from the sarcoplasmic reticulum(SR). The resulting rise in intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$ activates the troponin complex, thereby initiating the contraction of the muscle. The question remains as to what factors are involved in the inhibition of SR $Ca^{2+}$ release in fatigued muscle. The purpose of this study was determine whether ATP-sensitive $K^+(K_{ATP})$ channels are activated and contribute to decrease in $[Ca^{2+}]_i$ during fatigue development in the mouse skeletal muscle. To elucidate a role of $K_{ATP})$ in relation to ECC, I measured the modulation effects of $K_{ATP})$ channel blocker(glibenclamide) and opener(pinacidil) on $[Ca^{2+}]_i$ after fatiguing electrical field stimulation(FEFS). Intracellular $Ca^{2+}$ signals were recorded by conforcal laser microscopy(LSM 410) and monitored using the fluorescent $Ca^{2+}$-Sensitive indicator Fluo-3 AM. The results of this study were as followed: 1. The relative [Ca2'li after FEFS in the pre-glibenclamide-treated group was higher than the control. And relative $[Ca^{2+}]_i$ after FEFS in the pre-glibenclamide-treated group was lower than the control. 2. The relative $[Ca^{2+}]_i$ after FEFS for 3 min in the control, pre-glibenclamide-treated group and pre-pinacidil-treated group showed a similar pattern; the gradually significant decrease in $[Ca^{2+}]_i$. But, these decreasing pattern was most significant in the control. These findings suggest a tight relationship between $K_{ATP})$ and $Ca^{2+}$ in ECC during fatigue. Therefore, 1 thought that activation of $K_{ATP})$ channels may be one of mechanisms of the fatigue in skeletal muscle.

  • PDF

Neuropeptide Regulation of Signaling and Behavior in the BNST

  • Kash, Thomas L.;Pleil, Kristen E.;Marcinkiewcz, Catherine A.;Lowery-Gionta, Emily G.;Crowley, Nicole;Mazzone, Christopher;Sugam, Jonathan;Hardaway, J. Andrew;McElligott, Zoe A.
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.

Mammalian Reproduction and Pheromones (포유동물의 생식과 페로몬)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2006
  • Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with $G_{{\alpha}i2}$, V2R with $G_{0\;{\alpha}}$). V2Rs are co-expressed with nonclassical MHC Ib genes(M10 and other 8 M1 family proteins). Other important molecular component of VNO neuron is a TrpC2, a cation channel protein of transient receptor potential(TRP) family and thought to have a crucial role in signal transduction. There are four types of pheromones in mammalian chemical communication - primers, signalers, modulators and releasers. Responses to these chemosignals can vary substantially within and between individuals. This variability can stem from the modulating effects of steroid hormones and/or non-steroid factors such as neurotransmitters on olfactory processing. Such modulation frequently augments or facilitates the effects that prevailing social and environmental conditions have on the reproductive axis. The best example is the pregnancy block effect(Bruce effect), caused by testosterone-dependent major urinary proteins(MUPs) in male mouse urine. Intriguingly, mouse GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Though it is quite controversial, recent studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.

  • PDF

A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology (45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC)

  • An, Tai-Ji;Park, Jun-Sang;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.122-130
    • /
    • 2013
  • This work proposes a 12b 100MS/s 45nm CMOS four-step pipeline ADC for high-speed digital communication systems requiring high resolution, low power, and small size. The input SHA employs a gate-bootstrapping circuit to sample wide-band input signals with an accuracy of 12 bits or more. The input SHA and MDACs adopt two-stage op-amps with a gain-boosting technique to achieve the required DC gain and high signal swing range. In addition, cascode and Miller frequency-compensation techniques are selectively used for wide bandwidth and stable signal settling. The cascode current mirror minimizes current mismatch by channel length modulation and supply variation. The finger width of current mirrors and amplifiers is laid out in the same size to reduce device mismatch. The proposed supply- and temperature-insensitive current and voltage references are implemented on chip with optional off-chip reference voltages for various system applications. The prototype ADC in a 45nm CMOS demonstrates the measured DNL and INL within 0.88LSB and 1.46LSB, respectively. The ADC shows a maximum SNDR of 61.0dB and a maximum SFDR of 74.9dB at 100MS/s, respectively. The ADC with an active die area of $0.43mm^2$ consumes 29.8mW at 100MS/s and a 1.1V supply.