• Title/Summary/Keyword: modulation of transcriptional activity

Search Result 23, Processing Time 0.028 seconds

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells

  • Kim, Nam-Ho;Sadra, Ali;Park, Hee-Young;Oh, Sung-Min;Chun, Jerold;Yoon, Jeong Kyo;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.123-134
    • /
    • 2019
  • Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.

Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

  • Seo, Ji-Yeon;Lim, Soon-Sung;Park, Ji-A;Lim, Ji-Sun;Kim, Hyo-Jung;Kang, Hui-Jung;YoonPark, Jung-Han;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • v.4 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by $CCl_4$ treatment to the control level. Hepatic injury induced by $CCl_4$ was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by $CCl_4$.

Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis

  • Umair, Zobia;Kumar, Shiv;Kim, Daniel H.;Rafiq, Khezina;Kumar, Vijay;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1061-1071
    • /
    • 2018
  • From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.

Effects of Epothilone A in Combination with the Antidiabetic Drugs Metformin and Sitagliptin in HepG2 Human Hepatocellular Cancer Cells: Role of Transcriptional Factors NF-κB and p53

  • Rogalska, Aneta;Sliwinska, Agnieszka;Kasznicki, Jacek;Drzewoski, Jozef;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.993-1001
    • /
    • 2016
  • Type 2 diabetes mellitus patients are at increased risk of many forms of malignancies, especially of the pancreas, colon and hepatocellular cancer. Unfortunately, little is known of the possible interaction between antidiabetic drugs and anticancer agents. The present study investigates the influence of metformin (MET) and sitagliptin (SITA) on the in vitro anticancer activity of the microtubule depolymerization inhibitor agent epothilone A (EpoA). Hepatocellular liver carcinoma cell line (HepG2) viability and apoptosis were determined by the MTT test and by double staining with PO-PRO-1 and 7-aminoactinomycin D, respectively, after treatment with EpoA, metformin or sitagliptin. The levels of nuclear factor NF-${\kappa}B$ and p53 were evaluated in the presence and absence of inhibitors. While EpoA and MET inhibited HepG2 cell proliferation, SITA did not. EpoA and SITA induced higher p53 levels than MET. All tested drugs increased the level of NF-${\kappa}B$. Only MET enhanced the proapoptotic effect of EpoA. The EpoA+MET combination evoked the highest cytotoxic effect on HepG2 cells and led to apoptosis independent of p53, decreasing the level of NF-${\kappa}B$. These findings support the link between NF-${\kappa}B$ and p53 in the modulation of apoptotic effects in HepG2 cells treated by EpoA. Our studies indicate that the combination of EpoA and MET applied in subtoxic doses has a stronger cytotoxic effect on liver cancer cells than each of the compounds alone. The therapeutic advantages of the combination of EpoA with MET may be valuable in the treatment of patients with diabetes mellitus type 2 (T2DM) and liver cancer.

Fatty Acid Modulation of Atherosclerosis by Peroxisome Proliferator- Activated Receptors

  • Erickson, Kent L.;Hubbard, Neil E.;Meinecke, Lynette M.
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.4
    • /
    • pp.454-460
    • /
    • 2002
  • While atherosclerosis is a major killer, there is now concern that mortality from the disease will increase due to the rising incidence of type II diabetes. Because diet can potentially influence both diseases, it is important to elucidate the role of diet in the progression of atherosclerosis. In addition, the mechanisms involved in dietary-related alterations of the disease need to be defined to guide public health recommendations to reduce athero-sclerosis incidence and limiting unwanted side effects. Since diet is thought to play a role in atherosclerosis even without added complications due to type II diabetes, reducing the incidence of that metabolic disease will not be enough. While evidence is increasing that high intake of carbohydrate can lead to type II diabetes and atherosclerosis, the preponderance of existing evidence indicates that intake of specific fats as a major dietary causal factor. It has recently been hypothesized that a dietary fat link to atherosclerosis may depend partly on the activity of a transcriptional regulator, the peroxisome proliferator activated receptors (PPAR). Thusfar, PPAR $\alpha$, $\beta$/$\delta$ and ${\gamma}$, have been shown to play a major role in metabolism, inflammation, and cancer. Furthermore, PPAR may regulate specific processes associated with atherosclerosis such as triglyceride and low density lipoprotein (LDL) metabolism; the reverse cholesterol transport pathway; lipid accumulation within plaques; the local inflammatory response and plaque stability. Synthetic ligands for PPAR have been developed; however, natural ligands include specific fatty acids and their metabolites. Though the role of PPAR in atherosclerosis has been reported with respect to synthetic ligands, additional studies need to be done with established and possible natural ligands. In this review, we will focus on the relation of dietary fat to PPAR alteration of atherosclerosis.

Gene Expression Profiling of Doxifluridine Treated Liver, Small and Large Intestine in Cynomolgus (Macaca fascicularis) Monkeys

  • Jeong, Sun-Young;Park, Han-Jin;Oh, Jung-Hwa;Kim, Choong-Yong;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • The mechanism of cytotoxicity of doxifluridine, a prodrug fluorouracil (5-FU), has been ascribed to the misincorporation of fluoropyrimidine into RNA and DNA and to the inhibition of the nucleotide synthetic enzyme thymidylate synthase. Increased understanding of the mechanism of 5-FU has led to the development of strategies that increases its anticancer activity or predicts its sensitivity to patients. Using GeneChip?? Rhesus Macaque Genome arrays, we analyzed gene expression profiles of doxifluridine after two weeks repeated administration in cynomolgus monkey. Kegg pathway analysis suggested that cytoskeletal rearrangement and cell adhesion remodeling were commonly occurred in colon, jejunum, and liver. However, expression of genes encoding extracellular matrix was distinguished colon from others. In colon, COL6A2, COL18A1, ELN, and LAMA5 were over-expressed. In contrast, genes included in same category were down-regulated in jejunum and liver. Interestingly, MMP7 and TIMP1, the key enzymes responsible for ECM regulation, were overexpressed in colon. Several studies were reported that both gene reduced cell sensitivity to chemotherapy-induced apoptosis. Therefore, we suggest they have potential as target for modulation of 5-FU action. In addition, the expression of genes which have been previously known to involve in 5-FU pathway, were examined in three organs. Particularly, there were more remarkable changes in colon than in others. In colon, ECGF1, DYPD, TYMS, DHFR, FPGS, DUT, BCL2, BAX, and BAK1 except CAD were expressed in the direction that was good response to doxifluridine. These results may provide that colon is a prominent target of doxifluridine and transcriptional profiling is useful to find new targets affecting the response to the drug.

1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (EC-18) Modulates Th2 Immunity through Attenuation of IL-4 Expression

  • Yoon, Sun Young;Kang, Ho Bum;Ko, Young-Eun;Shin, Su-Hyun;Kim, Young-Jun;Sohn, Ki-Young;Han, Yong-Hae;Chong, Saeho;Kim, Jae Wha
    • IMMUNE NETWORK
    • /
    • v.15 no.2
    • /
    • pp.100-109
    • /
    • 2015
  • Controlling balance between T-helper type 1 (Th1) and T-helper type 2 (Th2) plays a pivotal role in maintaining the biological rhythm of Th1/Th2 and circumventing diseases caused by Th1/Th2 imbalance. Interleukin 4 (IL-4) is a Th2-type cytokine and often associated with hypersensitivity-related diseases such as atopic dermatitis and allergies when overexpressed. In this study, we have tried to elucidate the function of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (EC-18) as an essential modulator of Th1/Th2 balance. EC-18 has showed an inhibitory effect on the production of IL-4 in a dose-dependent manner. RT-PCR analysis has proved EC-18 affect the transcription of IL-4. By analyzing the phosphorylation status of Signal transducer and activator of transcription 6 (STAT6), which is a transcriptional activator of IL-4 expression, we discovered that EC-18 induced the decrease of STAT6 activity in several stimulated cell lines, which was also showed in STAT6 reporter analysis. Co-treatment of EC-18 significantly weakened atopy-like phenotypes in mice treated with an allergen. Collectively, our results suggest that EC-18 is a potent Th2 modulating factor by regulating the transcription of IL-4 via STAT6 modulation, and could be developed for immune-modulatory therapeutics.

Specific Expression of Interferon-γ Induced by Synergistic Activation Mediator-Derived Systems Activates Innate Immunity and Inhibits Tumorigenesis

  • Liu, Shuai;Yu, Xiao;Wang, Qiankun;Liu, Zhepeng;Xiao, Qiaoqiao;Hou, Panpan;Hu, Ying;Hou, Wei;Yang, Zhanqiu;Guo, Deyin;Chen, Shuliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1855-1866
    • /
    • 2017
  • The synergistic activation mediator (SAM) system can robustly activate endogenous gene expression by a single-guide RNA. This transcriptional modulation has been shown to enhance gene promoter activity and leads to epigenetic changes. Human $interferon-{\gamma}$ is a common natural glycoprotein involved in antiviral effects and inhibition of cancer cell growth. Large quantities of high-purity $interferon-{\gamma}$ are important for medical research and clinical therapy. To investigate the possibility of employing the SAM system to enhance endogenous human $interferon-{\gamma}$ with normal function in innate immunity, we designed 10 single-guide RNAs that target 200 bp upstream of the transcription start sites of the $interferon-{\gamma}$ genome, which could significantly activate the $interferon-{\gamma}$ promoter reporter. We confirmed that the system can effectively and highly activate $interferon-{\gamma}$ expression in several humanized cell lines. Moreover, we found that the $interferon-{\gamma}$ induced by the SAM system could inhibit tumorigenesis. Taken together, our results reveal that the SAM system can modulate epigenetic traits of non-immune cells through activating $interferon-{\gamma}$ expression and triggering JAK-STAT signaling pathways. Thus, this strategy could offer a novel approach to inhibit tumorigenesis without using exogenous $interferon-{\gamma}$.

Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

  • Lee, Su Ui;Kim, Mun-Ock;Kang, Myung-Ji;Oh, Eun Sol;Ro, Hyunju;Lee, Ro Woon;Song, Yu Na;Jung, Sunin;Lee, Jae-Won;Lee, Soo Yun;Bae, Taeyeol;Hong, Sung-Tae;Kim, Tae-Don
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel-forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

Growth Inhibition of Human Hepatoma and Bladder Carcinoma Cells by DNA Topoisomerae Inhibitor β-lapachone (DNA topoisomerase 억제제인 β-lapachone에 의한 인체 간암 및 방광암세포 증식억제에 관한 연구)

  • Choi Da Yean;Lee Jae Il;Chung Hyun Sup;Seo Han Gyeol;Woo Hyun Joo;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.323-331
    • /
    • 2005
  • The objective of the present study was to investigate the effect of $\beta-lapachone$, a quinone obtained from the bark of the lapacho tree (Tabebuia avellanedae) in South America, on the cell growth of human hepatoma (HepG2) and bladder (T24) carcinoma cells. Exposure of cancer cells to $\beta-lapachone$ resulted in growth inhibition, morphological changes and apoptosis in a concentration-dependent manner, which could be proved by MTT assay and flow cytometry analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that $\beta-lapachone$ did not affect the levels of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAFl/CIPl) expression. However, the transcriptional factor Sp-l and proliferating cell nuclear antigen (PCNA) protein levels were significantly down-regulated by $\beta-lapachone$ in both cell lines. Moreover, $\beta-lapachone$ treatment caused a dose-dependent inhibition of the expression of telomere regulatory gene products such as human telomere reverse transcriptase (hTERT) and telomerase-associated protein-l (TEP-l). Taken together, these findings suggest that $\beta-lapachone$-induced inhibition of human hepatoma and bladder carcinoma cell proliferation is associated with the induction of apoptotic cell death via modulation of several major growth regulatory gene products, and provide important new insights into the additional mechanisms of the anti-cancer activity of $\beta-lapachone$.