Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0399

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells  

Kim, Nam-Ho (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University)
Sadra, Ali (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University)
Park, Hee-Young (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University)
Oh, Sung-Min (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University)
Chun, Jerold (Sanford Burnham Prebys Medical Discovery Institute)
Yoon, Jeong Kyo (Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University)
Huh, Sung-Oh (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University)
Abstract
Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.
Keywords
alternative splicing; HeLa E-box binding protein; lysophosphatidic acid receptor 1; transcription repressor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Valet, P., Pages, C., Jeanneton, O., Daviaud, D., Barbe, P., Record, M., Saulnier-Blache, J.S., and Lafontan, M. (1998). Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth. J. Clin. Invest. 101, 1431-1438.   DOI
2 Wang, L.-H., and Baker, N.E. (2015). E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Dev. Cell 35, 269-280.   DOI
3 Welner, R.S., Pelayo, R., and Kincade, P.W. (2008). Evolving views on the genealogy of B cells. Nat. Rev. Immunol. 8, 95-106.   DOI
4 Xie, W., Matsumoto, M., Chun, J., and Ueda, H. (2008). Involvement of LPA1 receptor signaling in the reorganization of spinal input through Abeta-fibers in mice with partial sciatic nerve injury. Mol. Pain 4, 46.   DOI
5 Ye, X., and Chun, J. (2010). Lysophosphatidic acid (LPA) signaling in vertebrate reproduction. Trends Endocrinol. Metab. 21, 17-24.   DOI
6 Yoon, S.-J., Foley, J.W., and Baker, J.C. (2015). HEB associates with PRC2 and SMAD2/3 to regulate developmental fates. Nat. Commun. 6, 6546.   DOI
7 Yoshitane, H., Ozaki, H., Terajima, H., Du, N.-H., Suzuki, Y., Fujimori, T., Kosaka, N., Shimba, S., Sugano, S., Takagi, T., et al. (2014). CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes. Mol. Cell. Biol. 34, 1776-1787.   DOI
8 Yukiura, H., Hama, K., Nakanaga, K., Tanaka, M., Asaoka, Y., Okudaira, S., Arima, N., Inoue, A., Hashimoto, T., Arai, H., et al. (2011). Autotaxin regulates vascular development via multiple lysophosphatidic acid (LPA) receptors in zebrafish. J. Biol. Chem. 286, 43972-43983.   DOI
9 Yung, Y.C., Mutoh, T., Lin, M.-E., Noguchi, K., Rivera, R.R., Choi, J.W., Kingsbury, M.A., and Chun, J. (2011). Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci. Transl. Med. 3, 99ra87.   DOI
10 Yung, Y.C., Stoddard, N.C., and Chun, J. (2014). LPA receptor signaling: pharmacology, physiology, and pathophysiology. J. Lipid Res. 55, 1192-1214.   DOI
11 Yung, Y.C., Stoddard, N.C., Mirendil, H., and Chun, J. (2015). Lysophosphatidic Acid Signaling in the Nervous System. Neuron 85, 669-682.   DOI
12 Zhang, Y., Chen, Y.-C.M., Krummel, M.F., and Rosen, S.D. (2012). Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. J. Immunol. 189, 3914-3924.   DOI
13 Zhou, T., and Chiang, C.-M. (2002). Sp1 and AP2 regulate but do not constitute TATA-less human TAF(II)55 core promoter activity. Nucleic Acids Res. 30, 4145-4157.   DOI
14 Zhou, T., and Chiang, C.M. (2001). The intronless and TATA-less human TAF(II)55 gene contains a functional initiator and a downstream promoter element. J. Biol. Chem. 276, 25503-25511.   DOI
15 Zhou, G.-P., Wong, C., Su, R., Crable, S.C., Anderson, K.P., and Gallagher, P.G. (2004). Human potassium chloride cotransporter 1(SLC12A4) promoter is regulated by AP-2 and contains a functional downstream promoter element. Blood 103, 4302-4309.   DOI
16 Birgbauer, E., and Chun, J. (2006). New developments in the biological functions of lysophospholipids. Cell Mol. Life Sci. 63, 2695-2701.   DOI
17 Anliker, B., Choi, J.W., Lin, M.-E., Gardell, S.E., Rivera, R.R., Kennedy, G., and Chun, J. (2013). Lysophosphatidic acid (LPA) and its receptor, LPA1 , influence embryonic schwann cell migration, myelination, and cell-to-axon segregation. Glia 61, 2009-2022.   DOI
18 Aoki, J. (2004). Mechanisms of lysophosphatidic acid production. Semin. Cell Dev. Biol. 15, 477-489.   DOI
19 Benson, L.Q., Coon, M.R., Krueger, L.M., Han, G.C., Sarnaik, A.A., and Wechsler, D.S. (1999). Expression of MXI1, a Myc antagonist, is regulated by Sp1 and AP2. J. Biol. Chem. 274, 28794-28802.   DOI
20 Burke, T.W., and Kadonaga, J.T. (1997). The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev. 11, 3020-3031.   DOI
21 Chan, L.C., Peters, W., Xu, Y., Chun, J., Farese, R.V.J., and Cases, S. (2007). LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA). J. Leukoc. Biol. 82, 1193-1200.   DOI
22 Gennero, I., Laurencin-Dalicieux, S., Conte-Auriol, F., Briand-Mesange, F., Laurencin, D., Rue, J., Beton, N., Malet, N., Mus, M., Tokumura, A., et al. (2011). Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass. Bone 49, 395-403.   DOI
23 Chen, Y., Ramakrishnan, D.P., and Ren, B. (2013). Regulation of angiogenesis by phospholipid lysophosphatidic acid. Front. Biosci. (Landmark Ed.) 18, 852-861.   DOI
24 Choi, J.W., Herr, D.R., Noguchi, K., Yung, Y.C., Lee, C.-W., Mutoh, T., Lin, M.-E., Teo, S.T., Park, K.E., Mosley, A.N., et al. (2010). LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol. 50, 157-186.   DOI
25 Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.   DOI
26 Gery, S., and Koeffler, H.P. (2003). Repression of the TMEFF2 promoter by c-Myc. J. Mol. Biol. 328, 977-983.   DOI
27 Goetzl, E.J., Kong, Y., and Voice, J.K. (2000). Cutting edge: differential constitutive expression of functional receptors for lysophosphatidic acid by human blood lymphocytes. J. Immunol. 164, 4996-4999.   DOI
28 Harrison, S.M., Reavill, C., Brown, G., Brown, J.T., Cluderay, J.E., Crook, B., Davies, C.H., Dawson, L.A., Grau, E., Heidbreder, C., et al. (2003). LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Mol. Cell. Neurosci. 24, 1170-1179.   DOI
29 Hecht, J.H., Weiner, J.A., Post, S.R., and Chun, J. (1996). Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol. 135, 1071-1083.   DOI
30 Herr, K.J., Herr, D.R., Lee, C.-W., Noguchi, K., and Chun, J. (2011). Stereotyped fetal brain disorganization is induced by hypoxia and requires lysophosphatidic acid receptor 1 (LPA1) signaling. Proc. Natl. Acad. Sci. USA 108, 15444-15449.   DOI
31 Inoue, M., Rashid, M.H., Fujita, R., Contos, J.J.A., Chun, J., and Ueda, H. (2004). Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat. Med. 10, 712-718.   DOI
32 Inoue, M., Xie, W., Matsushita, Y., Chun, J., Aoki, J., and Ueda, H. (2008). Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. Neuroscience 152, 296-298.   DOI
33 Kihara, Y., Maceyka, M., Spiegel, S., and Chun, J. (2014). Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br. J. Pharmacol. 171, 3575-3594.   DOI
34 Jen, Y., Manova, K., and Benezra, R. (1997). Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn. 208, 92-106.   DOI
35 Kano, K., Arima, N., Ohgami, M., and Aoki, J. (2008). LPA and its analogs-attractive tools for elucidation of LPA biology and drug development. Curr. Med. Chem. 15, 2122-2131.   DOI
36 Ke, S.H., and Madison, E.L. (1997). Rapid and efficient site-directed mutagenesis by single-tube "megaprimer" PCR method. Nucleic Acids Res. 25, 3371-3372.   DOI
37 Liu, Y.-B., Kharode, Y., Bodine, P.V.N., Yaworsky, P.J., Robinson, J.A., and Billiard, J. (2010). LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4. J. Cell. Biochem. 109, 794-800.   DOI
38 Ladron de Guevara-Miranda, D., Moreno-Fernandez, R.D., Gil-Rodriguez, S., Rosell-Valle, C., Estivill-Torrus, G., Serrano, A., PavOn, F.J., Rodriguez de Fonseca, F., Santin, L.J., and Castilla-Ortega, E. (2018). Lysophosphatidic acid-induced increase in adult hippocampal neurogenesis facilitates the forgetting of cocaine-contextual memory. Addict. Biol. doi: 10.1111/adb.12612.   DOI
39 Lapierre, D.M., Tanabe, N., Pereverzev, A., Spencer, M., Shugg, R.P.P., Dixon, S.J., and Sims, S.M. (2010). Lysophosphatidic acid signals through multiple receptors in osteoclasts to elevate cytosolic calcium concentration, evoke retraction, and promote cell survival. J. Biol. Chem. 285, 25792-25801.   DOI
40 Lazorchak, A., Jones, M.E., and Zhuang, Y. (2005). New insights into E-protein function in lymphocyte development. Trends Immunol. 26, 334-338.   DOI
41 D'Souza, K., Paramel, G. V, and Kienesberger, P.C. (2018). Lysophosphatidic acid signaling in obesity and insulin resistance. Nutrients 10, 399.   DOI
42 Chow, G., and Knudson, W. (2005). Characterization of promoter elements of the human HYAL-2 gene. J. Biol. Chem. 280, 26904-26912.   DOI
43 Chun, J., and Jaenisch, R. (1996). Clonal cell lines produced by infection of neocortical neuroblasts using multiple oncogenes transduced by retroviruses. Mol. Cell Neurosci. 7, 304-321.   DOI
44 Massari, M.E., and Murre, C. (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell Biol. 20, 429-440.   DOI
45 Murre, C. (2005). Helix-loop-helix proteins and lymphocyte development. Nat. Immunol. 6, 1079-1086.   DOI
46 Powell, L.M., and Jarman, A.P. (2008). Context dependence of proneural bHLH proteins. Curr. Opin. Genet. Dev. 18, 411-417.   DOI
47 Contos, J.J., and Chun, J. (1998). Complete cDNA sequence, genomic structure, and chromosomal localization of the LPA receptor gene, lpA1/vzg-1/Gpcr26. Genomics 51, 364-378.   DOI
48 Contos, J.J., Fukushima, N., Weiner, J.A., Kaushal, D., and Chun, J. (2000). Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl. Acad. Sci. USA 97, 13384-13389.   DOI
49 Engel, I., and Murre, C. (2001). The function of E- and Id proteins in lymphocyte development. Nat. Rev. Immunol. 1, 193-199.   DOI
50 Estivill-Torrus, G., Llebrez-Zayas, P., Matas-Rico, E., Santin, L., Pedraza, C., De Diego, I., Del Arco, I., Fernandez-Llebrez, P., Chun, J., and De Fonseca, F.R. (2008). Absence of LPA1 signaling results in defective cortical development. Cereb. Cortex 18, 938-950.   DOI
51 Fischer, B., Azim, K., Hurtado-Chong, A., Ramelli, S., Fernández, M., and Raineteau, O. (2014). E-proteins orchestrate the progression of neural stem cell differentiation in the postnatal forebrain. Neural Dev. 9, 23.   DOI
52 Fukushima, N., Weiner, J.A., and Chun, J. (2000). Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev. Biol. 228, 6-18.   DOI
53 Tsujiuchi, T., Shimizu, K., Onishi, M., Sugata, E., Fujii, H., Mori, T., Honoki, K., and Fukushima, N. (2006). Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines. Biochem. Biophys. Res. Commun. 349, 1151-1155.   DOI
54 Roberts, C., Winter, P., Shilliam, C.S., Hughes, Z.A., Langmead, C., Maycox, P.R., and Dawson, L.A. (2005). Neurochemical changes in LPA1 receptor deficient mice--a putative model of schizophrenia. Neurochem. Res. 30, 371-377.   DOI
55 Ross, S.E., Greenberg, M.E., and Stiles, C.D. (2003). Basic helix-loophelix factors in cortical development. Neuron 39, 13-25.   DOI
56 Sheng, X., Yung, Y.C., Chen, A., and Chun, J. (2015). Lysophosphatidic acid signalling in development. Development 142, 1390-1395.   DOI
57 Uchida, H., Nagai, J., and Ueda, H. (2014). Lysophosphatidic acid and its receptors LPA1 and LPA3 mediate paclitaxel-induced neuropathic pain in mice. Mol. Pain 10, 71.   DOI
58 Urban, A., Neukirchen, S., and Jaeger, K.E. (1997). A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res. 25, 2227-2228.   DOI