• Title/Summary/Keyword: modular robot

Search Result 115, Processing Time 0.039 seconds

The Robot Soccer Strategy and Tactic Using Fuzzy Logic (퍼지 로직을 적용한 로봇축구 전략 및 전술)

  • 이정준;지동민;주문갑;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.3-6
    • /
    • 2004
  • 본 논문에서는 퍼지 로직을 이용하여 로봇과 공의 상태에 따른 로봇 행동의 선택 알고리즘을 제시한다. 전략 및 전술 알고리즘으로 많이 알려진 Modular Q-학습 알고리즘은 개체의 수에 따른 상태수를 지수 함수적으로 증가시킬 뿐만 아니라, 로봇이 협력하기 위해 중재자 모듈이라는 별도의 알고리즘을 필요로 한다. 그러나 앞으로 제시하는 퍼지 로직을 적용한 로봇축구 전략 및 전술 알고리즘은 퍼지 로직을 이용하여 로봇의 주행 알고리즘을 선택하는 과정과 로봇의 행동을 협력하는 과정을 동시에 구현함으로써, 계산 양을 줄여 로봇 축구에 보다 적합하게 해준다.

  • PDF

개방형 로봇제어를 위한 표준기준모델에 관한 연구

  • 김호철;홍금식;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.872-875
    • /
    • 1995
  • The strategy of open architecture control system intends to integrate manufacturing components on a single platform, so that a particular component can be easily added and/or replaced. Therefore, the control scheme is neither hardware dependent nor software dependent. In this paper a modular and object oriented approach for the open architecture structure of control systems is invesigated. A standard reference model for genetic manufacturer system, which consists of three modules; hardware module, operating system module, and application software module, is first proposed. Then a standard reference model for open architecture robot control system is suggested.

  • PDF

The Development of High Precision Manipulator and Micro Gripper (미세 작업을 위한 마이크로-나노 로봇개발)

  • Lee, Jong-Bae;Park, Chang-Woo;Kim, Bong-Seok;Park, Jun-Sik;Sung, Ha-Gyeong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • In this paper, a robotic system which consists of a precision manipulator and a micro gripper for a micro system assembly is presented. By the experiment, we proved that the developed the system gives acceptable performance when minute operations. Developed the micro-nano robot is actuated by newly proposed modular revolute and prismatic actuators. As an end-effector of this system, micro gripper is designed and fabricated with MEMS technology and the displacement of jaw is up to 142.8 micro meter. We think that new robot system will be appropriate for micro system assembly tasks and life science application.

  • PDF

A Study on the Development and Construction of a programming language for SCARA Type Robots (SCARA형 로보트의 프로그래밍 언어개발 및 구성에 관한 연구)

  • 고명삼;이범희;이기동;김대원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.11
    • /
    • pp.796-803
    • /
    • 1988
  • In this paper, the design method, design techniques and structure of a language for a SCARA type industrial robot, are presented. The proposed new language is modular and expandable using the C programming language and the 8086 assembly language. It is composed of monitor mode which controls the main flow of the programs, editing mode which generates, corrects and edits the programs, execution mode which executes the generated programs, I/O mode which interacts with the external devices, and teach mode. The developed language is implemented on the robot controller to verify its performance.

  • PDF

Cooperative Coordination Method of Neural Network Controller Module for Autonomous Mobile Robot Navigation

  • Joo, Han-Seong;Young, Oh-Se
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.3-178
    • /
    • 2001
  • This paper is concerned with designing a neural network based navigator that is optimized in a user-defined sense for a mobile robot using ultrasonic sensors to travel to a goal position safely and efficiently without any prior map of the environment. The neural network has a dynamically reconfigurable structure that not only can optimize the weights but also the input sensory connectivity in order to meet any user-defined objective. Therefore, in this research, we can select an optimal subset of sensory inputs that results in the best performance related to both navigation and structural complexity. Further, this research uses the manually trained initial population and the modular neural network to alleviate ...

  • PDF

Design of 7 D.O.F Manipulator Cooperation Robot (7자유도 매니퓰래이터 협업로봇 설계)

  • Moon, Yong-Seon;Bae, Young-Chul;Roh, Sang-Hyun;Cho, Kwang-Hoon;Park, Yong-Gu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, we implement that hollow type joint using two more than general motor and design for compact structure embedded electronic parts in the development of 7 degree of freedom manipulator. We propose a method to overcome risk and the limit of operating radius which are point out as a limit of previous industrial robot. and also propose to more efficient and stable manipulator implement method.

A Robot Localization based on RGB-D Sensor (RGB-D 센서 기반의 로봇 위치추정 기법 연구)

  • Seo, Yu-Hyeon;Lee, Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.872-875
    • /
    • 2014
  • 재난방지 및 구호에 사용되는 로봇의 주된 목적은 인간이 직접적인 접근을 할 수 없는 지역을 사전에 탐사하여 인간으로 하여금 올바른 판단을 돕기 위함에 있다. 하지만, 재난 지역에서는 통신장애 문제나, 육안 식별이 불가능한 상황, 원격조정을 통하여 로봇이 업무 수행에 상당한 제약을 받는다. 이 문제를 해결하기 위해 "LED-RGB 칼라센서를 이용한 상호위치 인식 방법연구"[1]을 수행하였으나, RGB의 인식거리가 상당히 짧고, 판단이 모호한 단점이 발생하였다. 따라서 본 연구에서는 이를 개선한 RGB-D센서를 이용하여 RGB의 인식거리를 증가시켰다. 또한 더욱 높은 정확성을 이용하기 위해, Depth를 사용하여 사물들의 특징점들을 랜드마크로 하고 랜드마크로부터의 상대위치를 파악하여 위치를 추정하는 방법을 제안하고자 한다. 마지막으로 상호인식 알고리즘을 이전 방식과 비교하고자 한다.

Development and Walking Pattern Generation of Biped Humanoid Robot (이족보행 휴머노이드 로봇의 개발과 보행패턴 생성)

  • Choi, Insoo;Lee, Seung Jeong;Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.173-178
    • /
    • 2017
  • As research on the practical use of robots has continued since the past, advancements into each field of society are being continuously tried in modern society, breaking bounds from the previous experimental environment. However, in order for robots to be applied to the real environment, the production cost, which is considered to be the biggest disadvantage of commercializing the existing robot platform, and the adaptability issue in working environments in terms of human standards must be considered. This paper proposes a robot of biped walking form, which conforms to the degree of freedom and the size of human beings. By replacing the encoder with a combined module of potentiometer, the high cost of production is reduced, and by adopting a modular design that is easy to replace parts, the maintenance cost of robots is reduced. Finally, stability was verified by applying a walking pattern to two dummy robots of different sizes and motor arrangements. In this paper, after developing the real biped walking robots, the performance and usability were verified through walking experiments and applying the walking pattern using the developed robots.

Shifting and Automated Replacement of Lighting Devices for LED Stage Lighting (조명장치의 이동과 자동 교체가 가능한 LED 무대조명 시스템)

  • You, In-Hwan;Lee, Bo-Hee;Song, Hyun-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.1-7
    • /
    • 2011
  • A performance delivers the contents and feeling through human bodies and stage settings in the limited space of a stage. Among the stage settings, the lighting creates overall atmospheres effectively according to the situations of the performance such as a time flow, a change of seasons, an expression of the mental state of the performer. As the LED lighting is used more widely, the number and the size of the lighting is being decreased, which makes it possible for various devices to be used. However, just as conventional lighting devices, most of them are fixed. So it is difficult to use them at a blind spot and to replace them. To solve this problem, this article suggests a system which replaces lighting automatically and moves. As it can moved to a spot we want on a rail, and the lighting system can be replaced by itself, it can have various lighting effects, increasing the effectiveness of the performance. Additionally, it can also decrease the danger of a worker operating the lighting device located at a high place. At the mock-up experiment, its mobility and stability on a rail were tested using the wheel of the Modular Robot.

Study on the Small Sized Robots Actuator using Piezoelectric Ceramic Bender (압전세라믹 벤더를 이용한 소형로봇용 구동원에 관한 연구)

  • Park, Jong-Man;Song, Chi-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study proposed piezoelectric ceramic bender actuators for application to small walking robots. As the space where human access has recently become increasingly restricted (e.g., highly concentrated radioactive storage areas, viral contaminated areas, terrorist zones, etc.), the scope of using robots is becoming more diverse, and many actions that were possible only in the past have been attempted to be replaced by small robots. This robotic concept has the advantage of being simple in structure, making it compact and producing a large size work force. The dynamic modeling, using finite element analysis, maximized the robot's mobility performance by optimizing the shape of the actuator, and the results were verified through fabrication and experimentation. The actuator moved at a maximum speed of 236 mm/s under no load conditions, and it could move at a speed of 156 mm/s under load conditions of 5g. The proposed actuator has the advantage of modular additions depending on the mission and required performance, which ensured that they are competitive against similar drive sources previously created.