• Title/Summary/Keyword: modular functions

Search Result 161, Processing Time 0.025 seconds

Design of Reassembly Unit Modular Wearable Device (단위 모듈 기반의 재조립 가능한 웨어러블 디바이스 구조 설계)

  • Lee, Geo-Yun;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.338-346
    • /
    • 2016
  • Wearable Device has various constraint about battery power consumption, size, weight, etc, because the devices is worn and operated by person and provide services. So, if a device includes too many functions, it dose not satisfies the constraint and lose price competitiveness due to become expensive. Therefore we suggest that make reassembly Unit Modular Device witch has common used functions in wearable devices and user can receive various services to reassemble Unit Modules. It is comprised of frames and modules. Each module has various functions. Each frames help module to communicate each modules. To realize this device, we design to guarantee each services to use necessary modules, to give priority to modules depending on the important of the task, to set that does not use to low energy mode.

Development of Software Architecture for Modular Personal Robot (모듈형 퍼스널 로봇의 소프트웨어 아키택처 개발)

  • Kim Hong-Seok;Yang Kwang-Woong;Choi Moo-Sung;Won Dae-Heui;Lee Ho-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1264-1270
    • /
    • 2004
  • In this paper, a standard robot design methodology is suggested and a software architecture for modular robot is introduced. The robot is modularized by several functions, and the module is produced according to a standard proposal. Each module requires standard interface for communicate in distributed environments. Software architecture was developed to support distributed component environment, and application development support tools are developed for user convenience. Many robot softwares are developed in a library form so that, they are being used widely robot application software development. Also a device driver was developed for the mostly used sensor and actuator. It is verified that the modular robot can be applied in various fields through guide, errand and guard scenario.

Adaptive Structure of Modular Wavelet Neural Network (모듈화된 웨이블렛 신경망의 적응 구조)

  • 서재용;김용택;김성현;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.247-250
    • /
    • 2001
  • In this paper, we propose an growing and pruning algorithm to design the adaptive structure of modular wavelet neural network(MWNN) with F-projection and geometric growing criterion. Geometric growing criterion consists of estimated error criterion considering local error and angle criterion which attempts to assign wavelet function that is nearly orthogonal to all other existing wavelet functions. These criteria provide a methodology that a network designer can constructs wavelet neural network according to one's intention. The proposed growing algorithm grows the module and the size of modules. Also, the pruning algorithm eliminates unnecessary node of module or module from constructed MWNN to overcome the problem due to localized characteristic of wavelet neural network which is used to modules of MWNN. We apply the proposed constructing algorithm of the adaptive structure of MWNN to approximation problems of 1-D function and 2-D function, and evaluate the effectiveness of the proposed algorithm.

  • PDF

Study on behavior of T-section modular composite profiled beams

  • Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.457-473
    • /
    • 2010
  • In this study, specimens were made with profile thicknesses and shear reinforcement as parameters. The bending and shear behavior were checked, and comparative analysis was conducted of the results and the theoretical values in order to see the applicability of T-section Modular Composite Profiled Beams (TMPB). In TMPB, the profiles of formwork functions play a structural role resisting the load. Also, the module concept, which is introduced into TMPB, has advantages: it can be mass-produced in a factory, it is lighter than an existing H-beam, it can be fabricated on the spot, and its section size is freely adjustable. The T1 specimens exhibited ductile behavior, where the whole section displayed strain corresponding to yielding strain at least without separation between modules. They also exhibited maximum strength similar to the theoretical values even if shear reinforcement was not applied, due to the marginal difference between shear strength and maximum bending monment of the concrete section. A slip between modules was incurred by shear failure of the bolts in all specimens, excluding the T1 specimen, and therefore bending moment could not be fully displayed.

Modular and versatile platform for the benchmarking of modern actuators for robots

  • Garcia, Elena;Gonzalez-de-Santos, Pablo
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.135-161
    • /
    • 2013
  • This work presents a test platform for the assessment and benchmarking of modern actuators which have been specifically developed for the new field and service robotics applications. This versatile platform has been designed for the comparative analysis of actuators of dissimilar technology and operating conditions. It combines a modular design to adapt to linear and rotational actuators of different sizes, shapes and functions, as well as those with different load capacities, power and displacement. This test platform emulates the kinematics of robotic joints while an adaptive antagonist-load actuator allows reproducing the variable dynamic loads that actuators used in real robotics applications will be subjected to. A data acquisition system is used for monitoring and analyzing test actuator performance. The test platform combines hardware and software in the loop to allow actuator performance characterization. The use of the proposed test platform is demonstrated through the characterization and benchmarking of three controllable impedance actuators recently being incorporated into modern robotics.

Performance comparison of SVM and neural networks for large-set classification problems (대용량 분류에서 SVM과 신경망의 성능 비교)

  • Lee Jin-Seon;Kim Young-Won;Oh Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.25-30
    • /
    • 2005
  • In this paper, we analyzed and compared the performances of modular FFMLP(feedforward multilayer perceptron) and SVUT(Support Vector Machine) for the large-set classification problems. Overall, SVM dominated modular FFMLP in the correct recognition rate and other aspects Additionally, the recognition rate of SVM degraded more slowly than neural network as the number of classes increases. The trend of the recognition rates depending on the rejection rate has been analyzed. The parameter set of SVM(kernel functions and related variables) has been identified for the large-set classification problems.

A Study on Modularity Concepts of Furniture Design - Focus on Fractal Concepts - (모듈화(Modularity) 개념이 적용된 가구디자인 연구 - 프랙탈 개념을 중심으로 -)

  • Lee, Hyun-Jung
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.5
    • /
    • pp.380-391
    • /
    • 2010
  • Modular furniture's colors, materials, finishing materials and quantities are determined by users' tastes and it's diverse functions, shapes and sizes are determined by the spaces of users. That is, modules satisfy the diversity of consumers, meet differentiated individuals' tastes and enable communications with consumers rather than delivering one-way messages of designers. The contemporary spaces of the 21st century have been gradually shifting from uniform spaces attaching weight on individuals' individuality and tastes and along with it, the consumption of expensive custom-made furniture and foreign branded furniture is increasing to satisfy those small numbers of consumers who want to express diversified individuality. The modular furniture as a concept which is the most suitable to Mass Customization can be produced in large quantities while considering the diverse needs and tastes of individuals and it does not have absolute shapes or sizes. The concept of modular furniture shows similarities to the creation of fractals that forms shapes by self similarities, repeats and similar transformations which is in the same context as the characteristics of a modular design that presents diversity with scales, materials and jointing points. Fractals will be combined with the digital media of today to present great plasticity and influence designers more heavily. Pursuit of new modeling is a requisite for the creation of future spaces and it will require continuous creativity and the transformable modular furniture will contribute to the satisfaction of diverse consumers' needs. This study is to propose the modular furniture that considers the diversity of the public in the 21st century and their individuality and that will enable interactions between designers and consumers.

  • PDF

Design and Development of Modular Replaceable AI Server for Image Deep Learning in Social Robots on Edge Devices (엣지 디바이스인 소셜 로봇에서의 영상 딥러닝을 위한 모듈 교체형 인공지능 서버 설계 및 개발)

  • Kang, A-Reum;Oh, Hyun-Jeong;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.470-476
    • /
    • 2020
  • In this paper, we present the design of modular replaceable AI server for image deep learning that separates the server from the Edge Device so as to drive the AI block and the method of data transmission and reception. The modular replaceable AI server for image deep learning can reduce the dependency between social robots and edge devices where the robot's platform will be operated to improve drive stability. When a user requests a function from an AI server for interaction with a social robot, modular functions can be used to return only the results. Modular functions in AI servers can be easily maintained and changed by each module by the server manager. Compared to existing server systems, modular replaceable AI servers produce more efficient performance in terms of server maintenance and scale differences in the programs performed. Through this, more diverse image deep learning can be included in robot scenarios that allow human-robot interaction, and more efficient performance can be achieved when applied to AI servers for image deep learning in addition to robot platforms.

Flexible Unit Floor Plan of a Modular House Considering the Production System (생산 시스템을 고려한 모듈러주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2021
  • After World War II, modular housing was developed as a means of quickly and efficiently meeting the housing supply demand. For the past 30 plus years, efforts have been made to improve modular housing in South Korea and to increase their competitiveness in the housing market. This study investigated modular houses based on a steel framed rahem structure which provides a flexible floor plan where walls are easily reconfigured to create rooms of various sizes and functions. Similar to the factory production methods used in the automotive industry, the modular housing industry can also benefit by standardizing such aspects as building components, manufacturing and construction methods, materials, process management, and floor plans. This study examined the feasibility of using a 3m × 3m module for developing various floor plans which are easy to produce and transport. Each 3m × 3m module can be configured to meet different living needs resulting in a complete home when multiple modules are connected. The module configurations can be varied to meet ground transportation and crane limitations. This study found that a 3m × 3m steel framed modular unit is a promising step towards providing residents with plans that meet their living preferences while improving and increasing the supply of modular houses.

FORMULAS OF GALOIS ACTIONS OF SOME CLASS INVARIANTS OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 1(mod 12)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.799-814
    • /
    • 2009
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of some class invariants from the generalized Weber functions $\mathfrak{g}_0,\mathfrak{g}_1,\mathfrak{g}_2$ and $\mathfrak{g}_3$ over quadratic number fields with discriminant $D{\equiv}1$ (mod 12).

  • PDF