• Title/Summary/Keyword: modified gravity model

Search Result 40, Processing Time 0.022 seconds

A Modified Equivalent Frame Model for Flat Plate Slabs Under Combined Lateral and Gravity Loads (조합하중시의 플랫 플레이트 슬래브 시스템에 대한 수정된 등가골조 모델)

  • Oh, Seung-Yong;Park, Young-Mi;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.369-372
    • /
    • 2006
  • Flat plate slab systems have been commonly used as a gravity force resisting systems, which should be constructed with lateral force resisting systems such as shear walls and moment resisting frame. ACI 318(2005) allows the Direct design method, the equivalent frame method (ACI-EFM) under gravity loads and the finite-element models, effective beam width models and equivalent frame models under lateral loads. ACI-EFM can be used for gravity loads as well as lateral loads analysis. But the method may not predict the behavior of flat plate slabs under lateral loads. Thus Previous study developed a Modified equivalent frame method(Modified-EFM) which could give more precise answer for flat plate slab under lateral loads. This study is to verified the accuracy of a Modified-EFM under combined lateral and gravity loads. The accuracy of this model is verified by comparing the results using the Modified-EFM with the results of finite element analysis. For this purpose, 7 story building is considered. The analysis results of other existing models are included. The analysis results show that Modified-EFM produces comparable drift and slab internal moments with those obtained from finite element analysis.

  • PDF

Testing Gravity with Cosmic Shear Data from the Deep Lens Survey

  • Sabiu, Cristiano G.;Yoon, Mijin;Jee, M. James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.62.2-62.2
    • /
    • 2018
  • From the gaussian, near scale-invariant density perturbations observed in the CMB to the late time clustering of galaxies, CDM provides a minimal theoretical explanation for a variety of cosmological data. However accepting this explanation, requires that we include within our cosmic ontology a vacuum energy that is ~122 orders of magnitude lower than QM predictions, or alternatively a new scalar field (dark energy) that has negative pressure. Alternatively, modifications to Einstein's General Relativity have been proposed as a model for cosmic acceleration. Recently there have been many works attempting to test for modified gravity using the large scale clustering of galaxies, ISW, cluster abundance, RSD, 21cm observations, and weak lensing. In this work, we compare various modified gravity models using cosmic shear data from the Deep Lens Survey as well as data from CMB, SNe Ia, and BAO. We use the Bayesian Evidence to quantify the comparison robustly, which naturally penalizes complex models with weak data support. In this poster we present our methodology and preliminary constraints on f(R) gravity.

  • PDF

Analysis of Static Stability by Modified Mathematical Model for Asymmetric Tractor-Harvester System: Changes in Lateral Overturning Angle by Movement of Center of Gravity Coordinates

  • Choi, Kyu-hong;Kim, Seong-Min;Hong, Sungha
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.127-135
    • /
    • 2017
  • Purpose: Purpose: The usability of a mathematical model modified for analysis of the static stability of an asymmetric tractor-harvester system was investigated. Method: The modified asynchronous mathematical model was validated through empirical experiments, and the effects of movements of the center of gravity (CG) coordinates on the stability against lateral overturning were analyzed through simulations. Results: Changes in the lateral overturning angle of the system were investigated when the coordinates of the CG of the system were moved within the variable range. The errors between simulation results and empirical experiments were compared, and the results were -4.7% at the left side overturning and -0.1% at the right side overturning. The asymmetric system was characterized in such a way that the right side overturning had an increase in overturning angle in the (+) variable range, while it had a decrease in overturning angle in the (-) variable range. In addition, the left side overturning showed an opposite result to that of the right side. At the declination angle (296<${\gamma}$<76), the right side overturning had an increase in the maximum overturning angle of 3.6%, in the minimum overturning angle of 20.3%, and in the mean overturning angle of 15.9%. Furthermore, at the declination angle (284<${\gamma}$<64), the left side overturning had a decrease in the maximum overturning angle of 29.2%, in the minimum overturning angle of 44%, and in a mean overturning angle of 39.7%. Conclusion: The modified mathematical model was useful for predicting the overturning angle of the asymmetric tractor-harvester system, and verified that a movement of the CG coordinates had a critical effect on its stability. In particular, the left side overturning was the most vulnerable to stability, regardless of the direction of declination angle.

Testing Gravity with Cosmic Shear Data from the Deep Lens Survey

  • Sabiu, Cristiano G.;Yoon, Mijin;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.40.4-41
    • /
    • 2018
  • The current 'standard model' of cosmology provides a minimal theoretical framework that can explain the gaussian, nearly scale-invariant density perturbations observed in the CMB to the late time clustering of galaxies. However accepting this framework, requires that we include within our cosmic inventory a vacuum energy that is ~122 orders of magnitude lower than Quantum Mechanical predictions, or alternatively a new scalar field (dark energy) that has negative pressure. An alternative approach to adding extra components to the Universe would be to modify the equations of Gravity. Although GR is supported by many current observations there are still alternative models that can be considered. Recently there have been many works attempting to test for modified gravity using the large scale clustering of galaxies, ISW, cluster abundance, RSD, 21cm observations, and weak lensing. In this work, we compare various modified gravity models using cosmic shear data from the Deep Lens Survey as well as data from CMB, SNe Ia, and BAO. We use the Bayesian Evidence to quantify the comparison robustly, which naturally penalizes complex models with weak data support. In this talk we present our methodology and preliminary results that show f(R) gravity is mildly disfavoured by the data.

  • PDF

Locational Determinants of FDI in Developing Countries (개발도상국 해외직접투자 유치 입지결정요인)

  • Yu, Seung Hun
    • Management & Information Systems Review
    • /
    • v.32 no.5
    • /
    • pp.1-18
    • /
    • 2013
  • This study examined location determinants of FDI inflows in developing countries. I proposed and test modified gravitiy model empirically that include host country locational determinants, gravity link variable and home country control variable. The main findings are: countries with a larger market size, faster economic growth, higher per capita income, higher quality of human capital, higher level of foreign stock and more liberalized economic regime attracted relatively more FDI inflows.

  • PDF

A DERIVATION OF MODIFIED NEWTONIAN DYNAMICS

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.93-96
    • /
    • 2013
  • Modified Newtonian Dynamics (MOND) is a possible solution for the missing mass problem in galactic dynamics; its predictions are in good agreement with observations in the limit of weak accelerations. However, MOND does not derive from a physical mechanism and does not make predictions on the transitional regime from Newtonian to modified dynamics; rather, empirical transition functions have to be constructed from the boundary conditions and comparisons with observations. I compare the formalism of classical MOND to the scaling law derived from a toy model of gravity based on virtual massive gravitons (the "graviton picture") which I proposed recently. I conclude that MOND naturally derives from the "graviton picture" at least for the case of non-relativistic, highly symmetric dynamical systems. This suggests that-to first order-the "graviton picture" indeed provides a valid candidate for the physical mechanism behind MOND and gravity on galactic scales in general.

Study of modified Westergaard formula based on dynamic model test on shaking table

  • Wang, Mingming;Yang, Yi;Xiao, Weirong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.661-670
    • /
    • 2017
  • The dynamic model test of dam-reservoir coupling system for a 203m high gravity dam is performed to investigate effects of reservoir water on dynamic responses of dam during earthquake. The hydrodynamic pressure under condition of full reservoir, natural frequencies and acceleration amplification factors along the dam height under conditions of full and empty reservoir are obtained from the test. The results indicate that the reservoir water have a stronger influence on the dynamic responses of dam. The measured natural frequency of the dam model under full reservoir is 21.7% lower than that of empty reservoir, and the acceleration amplification factor at dam crest under full reservoir is 18% larger than that under empty reservoir. Seismic dynamic analysis of the gravity dams with five different heights is performed with the Fluid-Structure Coupling Model (FSCM). The hydrodynamic pressures from Westergaard formula are overestimated in the lower part of the dam body and underestimated in its upper part to compare with those from the FSCM. The underestimation and overestimation are more significance with the increase of the dam height. The position of the maximum hydrodynamic pressure from the FSCM is raised with the increase of dam height. In view of the above, the Westergaard formula is modified with consideration in the influence of the height of dam, the elasticity of dam on the hydrodynamic pressure. The solutions of modified Westergaard formula are quite coincident with the hydrodynamic pressures in the model test and the previous report.

A Study on the Effects of Weight and Center of Gravity of a Planing Craft on Running Attitude (활주선의 하중 및 무게 중심 위치 변화가 항주 자세에 미치는 영향에 대한 연구)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Park, Han-Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.335-342
    • /
    • 2009
  • Motion characteristics of a planing craft are sensitively changed according to its weight and longitudinal center of gravity. In this paper, planing craft model tests were performed in calm water for various test conditions and Froude numbers. Sinkage and trim were measured to analyze the relations between the attitudes of a planing craft and the weight and center of gravity of it. Theoretical formula for the prediction of the attitudes of a prismatic planing hull was modified so that it can be applied to the prediction of the attitudes of a non-prismatic planing hull, and the calculation results by the modified formula were in good agreements with the experimental data.

CAN MASSIVE GRAVITY EXPLAIN THE MASS DISCREPANCY-ACCELERATION RELATION OF DISK GALAXIES?

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.133-140
    • /
    • 2013
  • The empirical mass discrepancy-acceleration (MDA) relation of disk galaxies provides a key test for models of galactic dynamics. In terms of modified laws of gravity and/or inertia, the MDA relation quantifies the transition from Newtonian to modified dynamics at low centripetal accelerations $a_c{\lesssim}10^{-10}ms^{-2}$. As yet, neither dynamical models based on dark matter nor proposed modifications of the laws of gravity/inertia have predicted the functional form of the MDA relation. In this work, I revisit the MDA data and compare them to four different theoretical scaling laws. Three of these scaling laws are entirely empirical; the fourth one - the "simple ${\mu}$" function of Modified Newtonian Dynamics - derives from a toy model of gravity based on massive gravitons (the "graviton picture"). All theoretical MDA relations comprise one free parameter of the dimension of an acceleration, Milgrom's constant aM. I find that the "simple ${\mu}$" function provides a good fit to the data free of notable systematic residuals and provides the best fit among the four scaling laws tested. The best-fit value of Milgrom's constant is $a_M=(1.06{\pm}0.05){\times}10^{-10}ms^{-2}$. Given the successful prediction of the functional form of the MDA relation, plus an overall agreement with the observed kinematics of stellar systems spanning eight orders of magnitude in size and 14 orders of magnitude in mass, I conclude that the "graviton picture" is sufficient (albeit probably not a necessary nor unique approach) to describe galactic dynamics on all scales well beyond the scale of the solar system. This suggests that, at least on galactic scales, gravity behaves as if it was mediated by massive particles.

Influence of ambient groundwater flow on DNAPL migration in a fracture network

  • 지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.43-46
    • /
    • 2003
  • We consider influences of the aperture variation and the ambient groundwater flow on the migration of DNAPL within a fracture network. In context of a modified invasion percolation (MIP) growth algorithm, we formulate a mechanistic model that includes capillary and gravity forces as well as viscous forces within the DNAPL and the ambient groundwater. The MIP model is verified against laboratory experiments, which is conducted using a two-dimensional random fracture network model. The results show that the aperture variation and ambient groundwater flow can be significant factors controlling DNAPL migration path within fracture networks.

  • PDF