Browse > Article
http://dx.doi.org/10.5303/JKAS.2013.46.3.133

CAN MASSIVE GRAVITY EXPLAIN THE MASS DISCREPANCY-ACCELERATION RELATION OF DISK GALAXIES?  

Trippe, Sascha (Department of Physics and Astronomy, Seoul National University)
Publication Information
Journal of The Korean Astronomical Society / v.46, no.3, 2013 , pp. 133-140 More about this Journal
Abstract
The empirical mass discrepancy-acceleration (MDA) relation of disk galaxies provides a key test for models of galactic dynamics. In terms of modified laws of gravity and/or inertia, the MDA relation quantifies the transition from Newtonian to modified dynamics at low centripetal accelerations $a_c{\lesssim}10^{-10}ms^{-2}$. As yet, neither dynamical models based on dark matter nor proposed modifications of the laws of gravity/inertia have predicted the functional form of the MDA relation. In this work, I revisit the MDA data and compare them to four different theoretical scaling laws. Three of these scaling laws are entirely empirical; the fourth one - the "simple ${\mu}$" function of Modified Newtonian Dynamics - derives from a toy model of gravity based on massive gravitons (the "graviton picture"). All theoretical MDA relations comprise one free parameter of the dimension of an acceleration, Milgrom's constant aM. I find that the "simple ${\mu}$" function provides a good fit to the data free of notable systematic residuals and provides the best fit among the four scaling laws tested. The best-fit value of Milgrom's constant is $a_M=(1.06{\pm}0.05){\times}10^{-10}ms^{-2}$. Given the successful prediction of the functional form of the MDA relation, plus an overall agreement with the observed kinematics of stellar systems spanning eight orders of magnitude in size and 14 orders of magnitude in mass, I conclude that the "graviton picture" is sufficient (albeit probably not a necessary nor unique approach) to describe galactic dynamics on all scales well beyond the scale of the solar system. This suggests that, at least on galactic scales, gravity behaves as if it was mediated by massive particles.
Keywords
Galaxies: kinematics and dynamics; Gravitation; Dark Matter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Anderson, J. D., et al. 1995, Improved Bounds on Nonluminous Matter in Solar Orbit, ApJ, 448, 885   DOI
2 Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revealing the State of the Universe, Science, 284, 1481   DOI   ScienceOn
3 Bekenstein, J. D., & Milgrom, M. 1984, Does the Missing Mass Problem Signal the Breakdown of Newtonian Gravity?, ApJ, 286, 7   DOI
4 Bekenstein, J. D. 2004, Relativistic Gravitation Theory for the Modified Newtonian Dynamics Paradigm, Phys. Rev. D, 70, 083509-1   DOI
5 Bekenstein, J. D. 2006, The Modified Newtonian Dynamics - MOND and Its Implications for New Physics, Contemp. Phys., 47, 387   DOI   ScienceOn
6 Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton University Press)
7 Cardone, V. F., Radicella, N., & Parisi, L. 2012, Constraining Massive Gravity with Recent Cosmological Data, Phys. Rev. D, 85, 124005   DOI
8 Einasto, J., Kaasik, A., & Saar, E. 1974, Dynamic Evidence on Massive Coronas of Galaxies, Nature, 250, 309   DOI
9 Faber, S. M., & Jackson, R. E. 1976, Velocity Dispersions and Mass-to-Light Ratios for Elliptical Galaxies, ApJ, 204, 668   DOI
10 Famaey, B., & Binney, J. 2005, Modified Newtonian Dynamics in the Milky Way, MNRAS, 363, 603   DOI   ScienceOn
11 Famaey, B., & McGaugh, S. S. 2012, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Relativ., 15, 10
12 Ferreira, P. G., & Starkman, G. D. 2009, Einstein's Theory of Gravity and the Problem of Missing Mass, Science, 326, 812   DOI   ScienceOn
13 Fierz, M., & Pauli, W. 1939, On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field, Proc. R. Soc. London A, 173, 211   DOI
14 Frank, M. J., et al. 2012, The Velocity Dispersion and Mass Function of the Outer Halo Globular Cluster Palomar 4, MNRAS, 423, 2917   DOI   ScienceOn
15 Giodini, S., et al. 2009, Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1, ApJ, 703, 982   DOI
16 Fukugita, M., & Peebles, P. J. E. 2004, The Cosmic Energy Inventory, ApJ, 616, 643   DOI
17 Gallagher, J. S., & Hudson, H. S. 1976, Surface Photometry of the Spiral Galaxy IC2233 and the Existence of Massive Halos, ApJ, 209, 389   DOI
18 Gillessen, S., Eisenhauer, F., Trippe, S., et al. 2009, Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center, ApJ, 692, 1075   DOI
19 Goldhaber, A. S., & Nieto, M. M. 2010, Photon and Graviton Mass Limits, Rev. Mod. Phys., 82, 939   DOI   ScienceOn
20 Griffith, D. 2008, Introduction to Elementary Particles (Weinheim: Wiley-VCH)
21 Hernandez, X., Jimenez, M. A., & Allen, C. 2012, Wide Binaries as a Critical Test of Classical Gravity, Eur. Phys. J. C, 72, 1884   DOI   ScienceOn
22 Hernandez, X., Jim´enez, M. A., & Allen, C. 2013, Flattened Velocity Dispersion Profiles in Globular Clusters: Newtonian Tides or Modified Gravity?, MNRAS, 428, 3196   DOI
23 Hinterbichler, K. 2012, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671   DOI
24 Kroupa, P. 2012, The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, PASA, 29, 395   DOI
25 Lee, M. G., & Jang, I. S. 2012, The Distance to M101 Hosting Type Ia Supernova 2011fe Based on the Tip of the Red Giant Branch, ApJL, 760, L14   DOI
26 McGaugh, S. S. 2004, The Mass Discrepancy-Acceleration Relation: Disk Mass and the Dark Matter Distribution, ApJ, 609, 652   DOI
27 Milgrom, M. 1984, Isothermal Spheres in the Modified Dynamics, ApJ, 287, 571   DOI
28 Milgrom, M. 1983, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365   DOI
29 Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxies, ApJ, 270, 371   DOI
30 Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxy Systems, ApJ, 270, 384   DOI
31 Milgrom, M. 1994, Modified Dynamics Predictions Agree with Observations of the Hi Kinematics in Faint Dwarf Galaxies Contrary to the Conclusions of Lo, Sargent, and Young, ApJ, 429, 540   DOI
32 Ostriker, J. P., & Peebles, P. J. E. 1973, A Numerical Study of the Stability of Flattened Galaxies: Or, Can Cold Gas Survive?, ApJ, 186, 467   DOI
33 Riess, A. G., et al. 2011, A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, ApJ, 730, 119   DOI
34 Rubin, U. C., Ford, W. K. Jr., & Thonnard, N. 1980, Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii, From NGC4605 (R = 4 kpc) to UGC2885 (R = 122 kpc), ApJ, 238, 471   DOI
35 Sanders, R. H. 1990, Mass Discrepancies in Galaxies: Dark Matter and Alternatives, A&AR, 2, 1   DOI   ScienceOn
36 Sanders, R. H. 1994, A Faber-Jackson Relation for Clusters of Galaxies: Implications for Modified Dynamics, A&A, 284, L31
37 Sanders, R. H. 2010, The Universal Faber-Jackson Relation, MNRAS, 407, 1128   DOI   ScienceOn
38 Sanders, R. H. 2012, NGC2419 Does Not Challenge Modified Newtonian Dynamics, MNRAS, 419, L6   DOI   ScienceOn
39 Scarpa, R., et al. 2011, Testing Newtonian Gravity with Distant Globular Clusters: NGC1851 and NGC1904, A&A, 525, A148   DOI
40 Sanders, R. H., & McGaugh, S. S. 2002, Modified Newtonian Dynamics as an Alternative to Dark Matter, ARA&A, 40, 263   DOI   ScienceOn
41 Schodel, R., Merritt, D., & Eckart, A. 2009, The Nuclear Star Cluster of the Milky Way: Proper Motions and Mass, A&A, 502, 91   DOI   ScienceOn
42 Shull, J. M., Smith, B. D., & Danforth, C. W. 2012, The Baryon Census in Multiphase Intergalactic Medium: 30% of the Baryons May Still Be Missing, ApJ, 759, 23   DOI
43 Tholen, D. J., Tejfel, V. G., & Cox, A. N. 2000, in: Cox, A.N. (ed.), Allen's Astrophysical Quantities, 4th edn., 293 (New York: Springer)
44 Trippe, S., et al. 2008, Kinematics of the Old Stellar Population at the Galactic Centre, A&A, 492, 419   DOI   ScienceOn
45 Trippe, S. 2013, A Simplified Treatment of Gravitational Interaction on Galactic Scales, JKAS, 46, 41
46 Trippe, S. 2013, A Derivation of Modified Newtonian Dynamics, JKAS, 46, 93
47 Tully, R. B., & Fisher, J. R. 1977, A New Method of Determining Distances to Galaxies, A&A, 54, 661
48 Zwicky, F. 1933, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta, 6, 110