• Title/Summary/Keyword: modified coupled stress theory

Search Result 24, Processing Time 0.021 seconds

Thermoelastic beam in modified couple stress thermoelasticity induced by laser pulse

  • Kumar, Rajneesh;Devi, Shaloo
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.701-710
    • /
    • 2017
  • In this study, the thermoelastic beam in modified couple stress theory due to laser source and heat flux is investigated. The beam are heated by a non-Guassian laser pulse and heat flux. The Euler Bernoulli beam theory and the Laplace transform technique are applied to solve the basic equations for coupled thermoelasticity. The simply-supported and isothermal boundary conditions are assumed for both ends of the beam. A general algorithm of the inverse Laplace transform is developed. The analytical results have been numerically analyzed with the help of MATLAB software. The numerically computed results for lateral deflection, thermal moment and axial stress due to laser source and heat flux have been presented graphically. Some comparisons have been shown in figures to estimate the effects of couple stress on the physical quantities. A particular case of interest is also derived. The study of laser-pulse find many applications in the field of biomedical, imaging processing, material processing and medicine with regard to diagnostics and therapy.

Finite element vibration analysis of nanoshell based on new cylindrical shell element

  • Soleimani, Iman;Beni, Yaghoub T.;Dehkordi, Mohsen B.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.33-41
    • /
    • 2018
  • In this paper, using modified couple stress theory in place of classical continuum theory, and using shell model in place of beam model, vibrational behavior of nanotubes is investigated via the finite element method. Accordingly classical continuum theory is unable to correctly compute stiffness and account for size effects in micro/nanostructures, higher order continuum theories such as modified couple stress theory have taken on great appeal. In the present work the mass-stiffness matrix for cylindrical shell element is developed, and by means of size-dependent finite element formulation is extended to more precisely account for nanotube vibration. In addition to modified couple stress cylindrical shell element, the classical cylindrical shell element can also be defined by setting length scale parameter to zero in the equations. The boundary condition were assumed simply supported at both ends and it is shown that the natural frequency of nano-scale shell using the modified coupled stress theory is larger than that using the classical shell theory and the results of Ansys. The results have indicated using the modified couple stress cylindrical shell element, the rigidity of the nano-shell is greater than that in the classical continuum theory, which results in increase in natural frequencies. Besides, in addition to reducing the number of elements required, the use of this type of element also increases convergence speed and accuracy.

Axisymmetric deformation in transversely isotropic thermoelastic medium using new modified couple stress theory

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.8 no.6
    • /
    • pp.501-522
    • /
    • 2019
  • The present study is concerned with the thermoelastic interactions in a two dimensional axisymmetric problem in transversely isotropic thermoelastic solid using new modified couple stress theory without energy dissipation and with two temperatures. The Laplace and Hankel transforms have been employed to find the general solution to the field equations. Concentrated normal force, normal force over the circular region, concentrated thermal source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. The effect of two temperature varying by taking different values for the two temperature on the components of normal stress, tangential stress, conductive temperature and couple stress are depicted graphically.

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

  • M., Alimoradzadeh;S.D., Akbas
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.485-504
    • /
    • 2022
  • This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.

Interactions in a transversely isotropic new modified couple stress thermoelastic thick circular plate with two temperature theory

  • Parveen Lata;Harpreet Kaur
    • Coupled systems mechanics
    • /
    • v.12 no.3
    • /
    • pp.261-276
    • /
    • 2023
  • This article is an application of new modified couple stress thermoelasticity without energy dissipation in association with two-temperature theory. The upper and lower surfaces of the plate are subjected to an axisymmetric heat supply. The solution is found by using Laplace and Hankel transform techniques. The analytical expressions of displacement components, conductive temperature, stress components and couple stress are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of two temperature is shown on the various components.

Size dependent vibration of laminated micro beams under moving load

  • S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.253-261
    • /
    • 2023
  • The goal of this paper is to investigate dynamic responses of simply-supported laminated micro beams under moving load. In the considered micro-scale problem, the modified coupled stress theory which includes the length scale parameter is used. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of stacking sequence of laminas, fibre orientation angles and the length scale parameter on the dynamic responses of laminated micro beams are examined and discussed.

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

Time Harmonic interactions in the axisymmetric behaviour of transversely isotropic thermoelastic solid using New M-CST

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.521-538
    • /
    • 2020
  • The present study is concerned with the thermoelastic interactions in a two dimensional homogeneous, transversely isotropic thermoelastic solid with new modified couple stress theory without energy dissipation and with two temperatures in frequency domain. The time harmonic sources and Hankel transform technique have been employed to find the general solution to the field equations.Concentrated normal force, normal force over the circular region, thermal point source and thermal source over the circular region have been taken to illustrate the application of the approach. The components of displacements, stress, couple stress and conductive temperature distribution are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique. Numerically simulated results are depicted graphically to show the effect of angular frequency on the resulted quantities.

Effect of two temperature and energy dissipation in an axisymmetric modified couple stress isotropic thermoelastic solid

  • Lata, Parveen;Kaur, Harpreet
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.199-215
    • /
    • 2022
  • The present paper deals with the axisymmetric deformation in homogeneousisotropic thermoelastic solid with two temperatures, with and without energy dissipation using modified couple stresstheory. The effect of energy dissipation and two temperature isstudied due to the concentrated normalforce, normalforce overthe circularregion, thermal pointsource and thermalsource over the circular region. The Laplace and Hankel transform techniques have been used to find the solution to the problem. The displacement components, conductive temperature distribution, stress components and couple stress are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. Effects of two temperature and energy dissipation on the conductive temperature,stress components and couple stress are depicted graphically.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.