• Title/Summary/Keyword: modes of traffic

Search Result 152, Processing Time 0.022 seconds

Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete

  • Ayatollahi, Majid R.;Pirmohammad, Sadjad;Sedighiani, Karo
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.569-585
    • /
    • 2014
  • In this paper, a four-layer road structure consisting of an edge transverse crack is simulated using three-dimensional finite element method in order to capture the influence of a single-axle wheel load on the crack propagation through the asphalt concrete layer. Different positions of the vehicular load relative to the cracked area are considered in the analyses. Linear elastic fracture mechanics (LEFM) is used for investigating the effect of the traffic load on the behavior of a crack propagating within the asphalt concrete. The results obtained show that the crack front experiences all three modes of deformation i.e., mode I, mode II and mode III, and the corresponding stress intensity factors are highly affected by the crack geometry and the vehicle position. The results also show that for many loading situations, the contribution of shear deformation (due to mode II and mode III loading) is considerable.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

Proposal of Cause Analysis and Solutions for Subway Congestion using R (R을 이용한 지하철 혼잡도 원인분석 및 대책방안 제안)

  • Jeong-Joon Kim;Seung-Yeon Hwang;Seok-Woo Jang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.183-188
    • /
    • 2024
  • As time progresses and technology advances, many modes of transportation have emerged compared to the past. People use various means of transportation including personal cars, subways, buses, and taxis, among which public transport is utilized by people of all ages and genders. Public transportation has the advantage of being affordable and convenient, but with the increase in population compared to the past, traffic congestion has also been increasing, making it increasingly uncomfortable. Especially during specific times or on certain dates, traffic congestion can become significantly worse than usual. Among these, the subway is the mode of transportation used most frequently. Therefore, in this study, we will discuss solutions and analyze the causes of congestion by subway section using the R program.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

Estimating the Efficiency of Transportation Energy Consumption based on Railway Infrastructure and Travel behavior Characteristics

  • Choi, Hyunsu;Nakagawa, Dai;Matsunaka, Ryoji;Oba, Tetsuharu;Yoon, Jongjin
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.33-44
    • /
    • 2013
  • In recent years, energy consumption in the transportation sector by expanding motorization continues to increase in almost every country in the world. Moreover, the growth rate of the transportation energy consumption is significantly higher than those of the civilian and industrial sectors. Therefore, every country strives to reduce its dependence on private transport, which is the main contributor to the transportation energy consumption. In many countries, concepts such as Transit Oriented Development (TOD) or New Urbanism, which controls road traffic by increasing the proportion of the public transportation significantly, have been implemented to encourage a modal shift to public transport. However, the level of change required for eliminating environmental problems is a challenging task. Minimizing transportation energy consumption by controlling the increase of the traffic demand and maintaining the level of urban mobility simultaneously is a pressing dilemma for each city. Grasping the impact of the diversity of the urban transport and infrastructure is very important to improve transportation energy efficiency. However, the potential for reducing urban transportation energy consumption has often been ineffectively demonstrated by the diversity of cities. Therefore, the accuracy of evaluating the current efficiency rate of the urban energy consumption is necessary. Nevertheless, quantitative analyses related to the efficiency of transportation energy consumption are scarce, and the research on the current condition of consumption efficiency based on international quantitative analysis is almost nonexistent. On the basis of this background problem definitions, this research first built a database of the transportation energy consumption of private modes in 119 cities, with an attempt to reflect individual travel behaviors calculated by Person Trip data. Subsequently, Data Envelopment Analysis (DEA) was used as an assessment method to evaluate the efficiency of transportation energy consumption by considering the diversity of the urban traffic features in the world cities. Finally, we clarified the current condition of consumption efficiency by attempting to propose a target values for improving transportation energy consumption.

Genotoxic Effect of Air-borne Particulate Matter in Residential Area of Seoul City (서울시내 주거지역 미세먼지의 유전독성 영향)

  • Oh Seung Min;Sung Hye Kyoung;Kim Eun Sil;Kim Jong Geuk;Ryu Byung Taek;Chung Kyu Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.365-374
    • /
    • 2005
  • Ambient air particulate matters are classified into two distinct modes in sire distribution, namely the coarse and fine particles. Correlation between high particulate concentration and adverse effect on human populations has long been recognized. However, the toxicology of these adverse efforts has not been clarified. We investigated the genotoxic effect of PM 2.5 collected from urban area in Seoul by comet assay (A549 cells), CBMN assay (CHO-K1 cells) and EROD-microbioassay (H4IIE cells). Results from in vitro micronucleus assay and comet assay showed that PM 2.5 samples collected from traffic area, residential area and indoor air induced chromosomal damage and DNA breakage in a non-cytotoxic dose. The complex mixture effect of these PM 2.5 extracts was quantified by EROD-microbioassay in terms of its bio-TEQ (biologiral -TCDD equivalent concentration) which was 70.87$\pm$28.07, 93.55$\pm$21.80 and 14.31 $\pm$ 1.10 ng/g-PM 2.5 in traffic area, residental area and indoor air samples, respectively. Conclusively, we suggested that PM 2.5 collected from traffic area and residential area contains CYPIA inducer and genotoxic materials.

Evaluation of Fuel Consumption Models for Eco-friendly Traffic Operations Strategies (친환경 교통운영전략을 위한 차량 연료소모량 예측모형 평가)

  • PARK, Sangjun;LEE, Jung-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.3
    • /
    • pp.234-247
    • /
    • 2016
  • As the necessity of the evaluation of environmentally-friendly traffic operations strategies becomes obvious, the characteristics of fuel consumption models should be comprehended in advance. This study selected three fuel consumption models developed in Korea and another three models widely used in North America, and compared their applicabilities. Specifically, the national institute of environmental research (NIER) drive modes and the VISSIM software were utilized to model various driving patterns, and their fuel consumptions were estimated using the fuel consumption models. Based on the results, all the models showed the similar results in the analysis of the most fuel efficient cruising speed. On the other hand, caution should be taken when using the KR-1 and KR-2 models in microscopic analyses because they are not sensitive to instantaneous power requirements of vehicles.

Development of the Emergency Vehicle Preemption Control System Based on UTIS (UTIS 기반의 긴급차량 우선신호제어 시스템 개발)

  • Hong, Kyung-Sik;Jung, Jun-Ha;Ahn, Gye-Hyeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • In this paper, we have developed the system of emergency vehicle preemption signal control based on UTIS(Urban Traffic Information System) which have been deployed and operated in the national capital area. It considered the turning direction(through or left turn) of emergency vehicle at the signalized intersection in order to provide the consecutive progression of emergency vehicle and minimize the control delay of passenger cars. we adopted several EVP control modes such as phase insertion and phase adjustment mode. Also, we evaluated the possibility of field implementation via simulation analysis using CORSIM RTE(Run Time Extension) based HILS(Hardware In the Loop Simulation). We expect that the result of this research contribute to providing the right-of-way to emergency vehicle in this country.

A Study on the Fuzzy System for Freeway Incident Duration Analysis (고속도로 사고존속시간 분석을 위한 퍼지시스템에 관한 연구)

  • 최회균
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.4
    • /
    • pp.143-163
    • /
    • 1997
  • Incident management is significant far the traffic management systems. The management of incidents determines the smoothness of freeway operations. The dynamic nature of incidents and the uncertainty associated with them require solutions based on the incident operator's judgment. Fuzz systems attempt to adapt such human expertise and are designed to replicate the decision making capability of on operator. Fuzzy systems process complex traffic information, and transmit it in a simplified, understandable form to human traffic operators. In this study, fuzzy rules were developed based on data from real incidents on Santa Monica Freeway in LosAngeles. The fuzzy rules ail linguistic based, and hence, user-friendly. A comparison of the results from the linguistic model with the real incident durations indicate that the outputs from the model reliably correspond to real incident durations conditions. The model reliably predicts the freeway incident duration. The modes can thus be used as an effective management tool for freeway incident response systems. The approach could be applied to other problems regarding dispatch systems in transportation.

  • PDF

Implementation of Road Weather Information System Supporting Intelligent Transportation Systems Based on USN (센서 네트워크 기반의 지능형 교통 시스템 지원을 위한 RWIS 구현)

  • Park, Hyun-Moon;Park, Soo-Huyn;Park, Woo-Chool;Seo, Hae-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3B
    • /
    • pp.485-492
    • /
    • 2010
  • Intelligent Transport System(ITS) has been studied in various systems, such as road environment information offering, vehicle short-range wireless/wire communication, vehicle collision preventing and pedestrian safety offering systems. Related to this, the USN technology based on the sensing accuracy for motorists and pedestrians safety, the information reliability, the maintenance and convenience for Sensor Network is highlighted. This study uses various sensors to construct USN to the road, and connect it to the developed RSU so it collects the real-time road environment information and offers it to OBU and Traffic Control Surveillance Center with Road Weather Information System. RSU collects roadside information for driver's safety and analyzes it to offer IP and beacon service according to the service priority to OBU & upper layer terminal. In the upper layer terminal it is developed the IP based Settop Box application program to offer the urban traffic information & road environment, and environment sensor error, etc. Finally, RWIS develops the real-time collection of roadside information to complement the driver's safety to the intelligent traffic system, and presents various service modes with technology convergence.