• Title/Summary/Keyword: modern applications

Search Result 514, Processing Time 0.027 seconds

Multi-Phase Flows and Image Processing: Level Set Method (다상유체와 영상처리 : 레벨셋 방법)

  • Kang, M.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.259-260
    • /
    • 2011
  • Using modern techniques from scientific computing and numerical analysis, natural phenomena or scientific experiment can be simulated effectively with a computer and used for computer graphics, for example as special effects for the film industry, manufacturing the thin film, multi-phase simulation and image processing. The Level Set method can make those things happen without a lot of difficulties. This method was devised by Osher and Sethian(1988) to represent dynamically moving interfaces as the zero level set of a scalar function that evolves in time. Since then, many researchers have worked on many applications using a Level Set Method. I will give a talk about the applications of the Level Set Method.

  • PDF

A Comparison Study of Real-Time Solution to All- Attitude Angles of an Aircraft

  • Shin Sung-Sik;Lee Jung-Hoon;Yoon Sug-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • In this paper, the quaternion, the dual Euler, and the direction cosine methods are numerically compared using a non-aerodynamic 6 degree-of-freedom rigid model at all-attitude angles of an aircraft. The dual Euler method turns out to be superior to the others in the applications because it shows better numerical accuracy, stability, and robustness in integration step sizes. The dual Euler method is affordably less efficient than the quaternion method in terms of computational cost. Numerical accuracy and stability, which allow larger integration step sizes, are more critical in modern real-time applications than computational efficiency because of today's increased computational power. If the quaternion method is required because of constraints in computation time, then a suppression mechanism should be provided for algebraic constraint errors which will eventually add computational burden.

Establishing Required LOD and Positioning Accuracy for Indoor Spatial Information Applications in Public Administrative Works

  • Park, Junho;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.2
    • /
    • pp.103-112
    • /
    • 2017
  • Due to the large size and high complexity of modern buildings, the interest and the studies about indoor spatial information are increasing. Previous studies related to indoor spatial information were mostly about relevant technologies, and the application of indoor spatial information has been less studied. In the present study, the public administrative work areas where indoor spatial information may be applied were identified by using a modified delphi technique. And the indoor LOD (Level of Detail) and indoor positioning accuracy for indoor spatial information applications considering user requirements was established as standards for efficiently establishing and providing services. The required LOD and positioning accuracy for services was established by reestablishing indoor LOD and positioning accuracy and classifying services with reference to those. The indoor LOD was reestablished from LOD 0 to 4 by focusing on service utilization and general recognition, and the positioning accuracy was reestablished in three levels by considering the accuracy of the present positioning technology and service utilization status.

NOISE Spectroscopy: Applications to Solid State NMR

  • Yang, Doo-Kyung;Zax, D.B.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.142-154
    • /
    • 2002
  • One of the oldest, still unsolved, and often ignored problems in magnetic resonance remains the issue of how to observe undistorted, normal one-dimensional spectra where the frequencies and their relative intensities represent faithfully the distribution of spins and sites in the sample within the magnet. Often distortions in these parameters are accepted, as the price of sensitivity enhancement, or because it is unclear just how these distortions might be avoided. Surprisingly enough, the problem is exacerbated by the use of modern techniques of pulsed Fourier transform NMR. Noise spectroscopy is an approach to solving the problem of distorted NMR spectra, which is largely under appreciated; it promises virtually "unlimited" distortionless bandwidths without costly hardware investments. Nonetheless, its exploitation remains limited. We will discuss why noise spectroscopy belongs in the arsenal of tricks spectroscopists should be aware of, show examples where its use is essential if accurate, quantitative NMR is to be expected, and discuss some recent approaches which extend its applicability yet further, particularly in solid state NMR and in applications to quadrupolar nuclear spins.

  • PDF

New Approaches to Flaw Classification and Sizing for Quantitative Ultrasonic Testing (정량적 초음파 시험을 위한 결함분류와 크기산정의 새로운 기법)

  • 송성진
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.3-16
    • /
    • 1997
  • In modern high performance engineering applications, the structural integrity of materials and structures are quite often evaluated using fracture mechanics. This evaluation in turn requires information on the flaw geometry (location, type, shape, size, and orientation). The ultrasonic nondestructive evaluation (NDE) method is one technique that is commonly used to provide such information. Flaw classification (determination of the flaw type ) and flaw sizing (prediction of the flaw shape, orientation and sizing parameters) are very important issues for quantitative ultrasonic NDE. In this paper new approaches to both classification and sizing of flaws are described together with extensive review of previous works on both topics. In the area of flaw classification, a methodology is developed which can solve classification problems using probabilistic neural networks, and in the area of flaw sizing, a time-of-flight equivalent (TOFE) sizing method is presented. The techniques proposed here are in a form that can be used directly in many practical applications to quantitative estimates of the flaw's significance.

  • PDF

Trends in Terahertz Imaging Technology (테라헤르츠 이미징 기술 개발 동향)

  • Choi, D.H.;Shin, J.H.;Lee, E.S.;Moon, K.W.;Lee, I.M.;Park, D.W.;Kim, H.S.;Kim, M.G.;Choi, K.S.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.26-35
    • /
    • 2019
  • Modern imaging technologies utilizing electromagnetic waves are indispensable in our daily lives. Applications, such as television and smartphone screens, radar imaging for weather forecast, and medical imaging, can be attributed to technology developments in various electromagnetic regions. Terahertz (THz) waves, electromagnetic (EM) waves located between far infrared and microwave regions, had left unexplored EM waves. Recent advances in technology have led to various two-dimensional and three-dimensional THz imaging techniques. In this article, we explain THz imaging techniques as well as the experimental results from our laboratory. Additionally, we introduce commercial THz cameras developed worldwide. Finally, we present the applications of THz imaging techniques.

Towards the Acceptance of Functional Requirements in M-Learning Application for KSA University Students

  • Badwelan, Alaa;Bahaddad, Adel A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.145-166
    • /
    • 2021
  • M-learning is one of the most important modern learning environments in developed countries, especially in the context of the COVID-19 pandemic. According to the Ministry of Education policies in Saudi Arabia, gender segregation in education reflects the country's religious values, which are a part of the national policy. Thus, it will help many in the target audience to accept online learning more easily in Saudi society. The literature review indicates the importance to use the UTAUT conceptual framework to study the level of acceptance through adding a new construct to the model which is Mobile Application Quality. The study focuses on the end user's requirements to use M-learning applications. It is conducted with a qualitative method to find out the students' and companies' opinions who working in the M-learning field to determine the requirements for the development of M-learning applications that are compatible with the aspirations of conservative societies.

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF

Augmented-Reality Survey: from Concept to Application

  • Kim, Soo Kyun;Kang, Shin-Jin;Choi, Yoo-Joo;Choi, Min-Hyung;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.982-1004
    • /
    • 2017
  • The recent advances in the field of augmented reality (AR) have shown that the technology is a fundamental part of modern immersive interactive systems for the achievement of user engagement and a dynamic user experience. This survey paper presents the descriptions of a variety of the new AR explorations, and the issues that are relevant to the contemporary development of the fundamental technologies and applications are discussed. Most of the literature regarding the pertinent topics-taxonomy, the core tracking and sensing technologies, the hardware and software platforms, and the domain-specific applications-are then chronologically surveyed, and in varying detail, this is supplemented with the cited papers. This paper portrays the diversity of the research regarding the AR field together with an overview of the benefits and the limitations of the competing and complementary technologies.

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs

  • Do, Thuan Cong;Kim, Gwang Bok;Kim, Cheol Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.1-9
    • /
    • 2018
  • Modern graphics processing units (GPUs) have become one of the most attractive platforms in exploiting high thread level parallelism with the support of new programming tools such as CUDA and OpenCL. Recent GPUs has applied cache hierarchy to support irregular memory access patterns; however, L1 data cache (L1D) exhibits poor efficiency in the GPU. This paper shows that the L1D does not always positively affect the applications in terms of performance and energy efficiency for the GPU. The performance of the GPU is even harmed by using the L1D for lots of applications. Our proposed technique exploits the characteristics of the currently-executed applications to predict the performance impact of the L1D on the GPU and then decides whether to continuously use the cache for the application or not. Our experimental results show that the proposed technique improves the GPU performance by 9.4% and saves up to 52.1% of the power consumption in the L1D.