
Journal of The Korea Society of Computer and Information

Vol. 23 No. 10, pp. 1-9, October 2018

www.ksci.re.kr

https://doi.org/10.9708/jksci.2018.23.10.001

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs

1)Thuan Cong Do*, Gwang Bok Kim**, Cheol Hong Kim**

Abstract

Modern graphics processing units (GPUs) have become one of the most attractive platforms in

exploiting high thread level parallelism with the support of new programming tools such as CUDA and

OpenCL. Recent GPUs has applied cache hierarchy to support irregular memory access patterns;

however, L1 data cache (L1D) exhibits poor efficiency in the GPU. This paper shows that the L1D

does not always positively affect the applications in terms of performance and energy efficiency for

the GPU. The performance of the GPU is even harmed by using the L1D for lots of applications. Our

proposed technique exploits the characteristics of the currently-executed applications to predict the

performance impact of the L1D on the GPU and then decides whether to continuously use the cache

for the application or not. Our experimental results show that the proposed technique improves the

GPU performance by 9.4% and saves up to 52.1% of the power consumption in the L1D.

▸Keyword: GPU, Cache Bypass, High Performance, Energy Efficiency, L1 Data Cache

I. Introduction

Modern Graphics Processing Units (GPUs) are

employed for handling not only graphics but also

general-purpose computations to utilize huge hardware

resources, known as General Purpose Computing on

Graphics Processing Units (GPGPUs). Cache memories

have been employed in recent GPUs to support diverse

access patterns, which are frequently exhibited in

general-purpose applications. In general, caches can

deliver performance improvement to the GPU for a

majority of applications; however, GPU caches have to

confront with many challenges caused by the limitations

of memory subsystem as well as cache hardware budget.

In addition, the design of GPU caches is still based on the

latency-optimized CPU caches [1] while the number of

memory requests issued by GPGPU applications is much

larger than the number issued by CPU applications.

Consequently, the low per-thread capacity and low

associativity of GPU caches can cause a system

bottleneck and finally performance degradation [2, 3].

In this work, we show that the L1D can harm the

performance of many other applications, even worse than

a no-L1D GPU. Furthermore, inappropriate usage of the

L1D consumes unnecessary energy for several

applications. Based on these observations, this paper

proposes a new mechanism (called AdmL1D) that is able

to switch off the L1D in the GPU depending on the

characteristics of the currently-executed applications.

The proposed AdmL1D tracks several parameters

representing the characteristics of the currently-executed

application during its execution time, and then exploits

these parameters as a hint to predict the impact of the

L1D on the GPU performance. The proposed mechanism

∙First Author: Thuan Cong Do, Corresponding Author: Cheol Hong Kim

*Do Cong Thuan (congthuan@korea.ac.kr), Dept. of Computer Science and Engineering, Korea University

**Gwang Bok Kim (loopaz63@gmail.com), School of Electronics and Computer Engineering, Chonnam National University

**Cheol Hong Kim (chkim22@chonnam.ac.kr), School of Electronics and Computer Engineering, Chonnam National

University

∙Received: 2018. 07. 25, Revised: 2018. 10. 05, Accepted: 2018. 10. 17.

∙This study was financially supported by Chonnam National University (Grant number: 2017-2727).

2 Journal of The Korea Society of Computer and Information

makes the decision about either continuously using or

switching off the cache. Our experiments show that the

proposed AdmL1D technique can improve the overall GPU

performance and significantly reduce the L1D energy

consumption for applications those cannot benefit from

the L1D. The simulation results show that the AdmL1D

provides a speedup of 9.4% over the baseline and saves

52.1% L1D power consumption on average. Moreover, the

AdmL1D does not degrade the performance for all

simulated applications.

The rest of this paper is organized as follows. Section

2 discusses related work. We briefly describe the GPU

architecture and our motivation in Section 3. Section 4

presents the proposed L1 data cache bypassing technique

for GPUs. Section 5 describes simulation methodology

and detailed experimental results. Finally, Section 6

concludes this paper.

II. Related Work

1. Related works

Recent GPUs have been widely adopted to handle

general-purpose applications as well as graphics

applications. A large number of works have been

proposed with the aim at fully utilizing the potentials of

GPU hardware resources while a fewer works have

focused on the energy reduction of the GPU. Warp/CTA

scheduling has gained the most attention due to their vital

role in improving the GPU performance. Various

scheduling schemes were proposed to increase the

utilization of GPU hardware resources [4, 5, 6, 7, 8].

Control-flow divergence is also one of the main problems

in up-to-date GPU architectures. Compared to other

techniques, Fung et al. [9] proposed one of the most

effective techniques for control-flow divergence problem,

which combine the threads from different warps to

address the hardware underutilization caused by branch

divergence.

The hardware budget for GPU caches limits the

effectiveness of cache memory in handling irregular

memory accesses. For this reason, proposing efficient

cache management techniques for the GPU is still

challenging. Recently, several works return to a

traditional cache bypassing solution for selectively

bypassing memory requests. Cache bypassing has been

widely applied to CPUs and is recognized as an effective

method to mitigate cache contention and resource

congestion. In general, cache-bypassing techniques can

be classified into two types of approaches including static

[15] and dynamic [16, 17, 19, 21]. Jia et al. [1] proposed

a hardware structure called memory request prioritization

buffer (MRPB), which employs request reordering and

cache bypassing, to avoid a system bottleneck in GPU

caches. Meanwhile, Chen et al. [23] and Duong et al.

[24] proposed an adaptive cache management technique

by combining the protection distance (PD) with cache

bypassing to improve the cache performance. Xie et al.

[25] proposed a coordinated static and dynamic cache

bypassing technique to identify the global loads that

indicate strong preferences for caching or bypassing

through profiling.

III. Background

3.1 Baseline GPU Architecture

This section briefly describes the baseline GPU

architecture, which is based on a typical NVIDIA GPU.

Further details on these architectures can be found in

previous works [9, 13]. The GPU consists of many

streaming multiprocessors (SMs); each typically has SIMT

(Single Instruction Multiple Threads) lanes of 32. Inside

the GPU, an interconnection network is used to connect

SMs together. The powerful computation ability of the

GPU partly comes from a huge register file supporting

parallel computation. With the on-chip register file, each

SM can accommodate a large number of threads. Similar

to CPUs, the GPU also have several special function units

(SFUs) and Load/Store units (L/SUs), which are

responsible for executing instructions.

The CUDA platform is used to parallelize the

applications. A CUDA application typically consists of

many kernels, each kernel includes groups of threads

known as CTAs. Within a CTA, threads are grouped into

warps of 32 threads, to be executed in lockstep fashion

with one instruction at one time. A CTA is an abstraction

that is required to encapsulate all synchronization and

barrier primitives among warps [20], helping CTAs to be

executed on SM in any order. Scheduling in a GPU is

performed as three-step process. In the first step, a

kernel is launched on the GPU. Next, the global CTA

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs 3

scheduler (e.g. GigaThread [14]) is responsible for

assigning CTAs to all available SMs in the second step.

CTAs are assigned according to a simple round-robin

fashion. Hardware resources limit the maximum number

of CTAs assigned per SM [18]. After the assignment of

CTAs, in the third step, warps associated with the

launched CTAs are scheduled to SIMT lanes of the

corresponding SM.

The baseline GPU has multiple levels of memories,

from L1 memories to DRAM. Each SM contains various

types of on-chip caches, including special purpose caches

(e.g. read-only, texture, constant and data). The L1D is

private per-SM and used to support irregular data

accesses. All threads of sibling warps can share L1

memories. Meanwhile, all of the CTAs in a kernel can

access the shared L2 cache and off-chip DRAM. Each

memory controller is associated with a slice of shared L2

cache bank. Memory controllers are responsible for

scheduling memory requests caused by L2 cache miss to

the DRAM. In the baseline GPU, the L1D works as the

central point of coherency since the SIMD cores are

connected to interconnection network through L1Ds. In

both cache levels, missed requests are recorded by the

Miss Status Holding Registers (MSHRs) and then sent to

the next level of the memory hierarchy [18].

3.2 Motivation

In general, many previous works [16, 21] supposed

that general-purpose applications take advantage from

cache memories, especially from the L1D in terms of

performance. However, we cannot be sure that this point

of view is always correct in GPUs. We suppose that the

GPU caches usually have unpredictable impact on the

performance. In this work, we only focus on the

performance impact of the L1D on general-purpose

applications except graphics applications. We analyze the

performance of several applications when they are

executed on the GPU with and without the L1D. We use

GPGPU-sim [18] to model NVIDIA-like GPU and

benchmarks from CUDA SDK [22], Rodinia [26] and

ISPASS [18] in this work.

Fig. 1(a) shows the performance of general-purpose

applications executed on the GPU without L1D normalized

to the baseline. Note that the GPU without L1D means that

all memory requests to the L1D will be directly forwarded

to next level of memory hierarchy (e.g. L2 cache). Fig. 1(b)

presents the miss rates of the L1D when applications are

executed on the GPU with L1D. From these figures, although

the L1D has positive impact in the GPU memory architecture

for some of applications, it can even harm the performance

of some other applications. For example, in the case of FWT,

it cannot gain any performance advantage from the L1D

despite the fact that more than 30% of memory requests

hit the L1D. However, with a similar hit rate, SNET even

benefits from bypassing the L1D. On the other hand, the

performance of LPS is reduced when GPU does not employ

the L1D, as we expected. Based on these results, we

classify the applications into two types depending on the

advantage they get from the L1D. Type-P denotes the

applications that the L1D has positive performance impact

while Type-N represents the applications that the L1D has

non-positive performance impact. According to these

results, we can know that the impact of L1D on the

performance of general-purpose applications is

unpredictable.

(a) Normalized IPC

(b) L1D miss rate

Fig. 1. Normalized IPC and L1D miss rates for GPGPU

workloads

IV. Proposed Technique

The number of times memory requests cannot be

4 Journal of The Korea Society of Computer and Information

Fig. 3. Pipeline architecture at MEM stage with proposed AdmL1D

accepted by the L1D (req-fail-num) during execution time

called warm-up-period is monitored. We find that the

ratio of the req-fail-num to the number of the L1D cache

accesses (L1D-acc-num), called R-to-A ratio, can

represent the cache efficiency well at run time. A

memory request is not handled due to the unavailability of

necessary resources, for example, the cache space is all

reserved or the miss queue is full. As the hardware

budget for the L1D is too small compared to the number

of memory requests from many SMs of the GPU, a large

number of memory requests cannot be processed and

have to retried in next cycles. When the number of

memory requests not handled is greater than the

threshold, it causes pipeline stalls and degrades the

performance. Therefore, the req-fail-num and

L1D-acc-num parameters are tracked and used to

evaluate the efficiency of the L1D for the AdmL1D.

Fig. 2 represents the R-to-A ratio of various

applications over one million cycles. We varied the

sampling period length depending on the length of the

execution time of applications. From this graph, we can

observe that there is a wide gap between the R-to-A

ratio of Type-P applications and Type-N applications.

Type-P applications (e.g. MON, LPS and QRG) can benefit

from the L1D, therefore, they have very low R-to-A

ratios, around zero. Meanwhile, Type-N applications (e.g.

FWT, SNET and BFS) those cannot benefit from the L1D,

have high R-to-A ratios. Furthermore, Fig. 2 shows that

the R-to-A ratio of all applications is stable at the

beginning of execution for a long period of time. Based

on our experiments, we empirically set cut-off of the

R-to-A ratio for 3, called B-threshold. This means that

an application with the R-to-A ratio greater than 3 is

considered as Type-N applications. When the AdmL1D is

applied, the req-fail-num and L1D-acc-num parameters

are tracked during the warm-up-period.

Fig. 2. R-to-A ratio

To prevent the performance degradation due to the

L1D, we propose a method that is able to identify what

type of applications cannot benefit from the L1D and what

type of applications can benefit from the L1D. When the

identification step finishes, the proposed AdmL1D decides

to continue employing or bypassing the L1D. Note that

the identification process needs to provide an accurate

result in a short period to maximize the potential

performance gains of the proposed technique. The right

side of Fig. 3 illustrates the detailed mechanism with the

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs 5

Fig. 4. Diagram of AdmL1D

AdmL1D at the MEM stage. Many complicated cache

management techniques [10, 11, 17] cannot demonstrate

their effectiveness due to the limited hardware budget of

L1D. We suppose that all bypassing the L1D when GPU is

executing applications on which the L1D has negative

performance impact could provide two potential

advantages including performance improvement and

energy savings. The challenge of the proposed technique

is to recognize the negative impact of the L1D on the

application’s performance at runt time. As shown in the

Fig. 4, the GPU cache management is modified with extra

hardware logic, AdmL1D unit. The AdmL1D consists of

three major parts: (1) a hardware logic unit that is used

for setting up initial parameters, (2) a hardware logic that

is used to count the number of request fails

(req-fail-num) and L1D accesses (L1D-acc-num) and

then make the R-to-A-ratio (the ratio of req-fail-nums to

L1D-acc-num), and (3) a comparator that compares the

R-to-A-ratio with the B-threshold to make the bypassing

decision. The output of AdmL1D unit decides whether the

memory requests can access the L1D or not.

The hardware logic unit (1) is responsible for setting

the warm-up-period. During this period, the AdmL1D unit

collects the information about the L1D cache usage.

warm-up-period is an important parameter that can affect

the efficiency of the proposed technique. The value of

this parameter depends on the execution time of each

application and is set based on the experiments with the

support of compiler. The execution time of the application

can be known exactly after the application is completed.

However, with the support of modern compilers, the

calculation of execution time can be simply obtained. For

instance, compliers can calculate the number of

instructions when the application is compiled, thus, the

execution time can be estimated quite accurately. Note

that the AdmL1D does not need an exact estimation of

application’s execution time. We can use two counters for

the hardware logic unit (2) to track the req-fail-num and

L1D-acc-num. The counting process is carried out during

the warm-up-period. In fact, there are several

parameters instead of cache-hit rates to predict the

cache usage, but we see that req-fail-num reflects the

most accurate cache usage information in a short period.

At the end of warm-up-period, the R-to-A ratio is

calculated and then it is compared to the B-threshold to

make the decision about bypassing the L1D. The

hardware logic unit (3) can be simply implemented by

using a comparator. If R-to-A ratio is greater than

B-threshold, since then all memory requests will bypass

the L1D and be forwarded to the lower level memories,

meaning that the L1D is disabled. Otherwise, memory

requests access the L1D as normal.

Fig. 5. L1D behavior across SMs of GPU when BFS is executed

Modern GPU architectures contain many SMs, which

have the same hardware logic. Therefore, any proposal at

SM-level is usually applied for all SMs of the GPU.

However, same hardware logic does not guarantee the

same cache behavior when applications are executed. In

case the L1D cache behavior of each SM is very

different, it can affect the correctness of our proposed

mechanism. In this work, we experimented on many

benchmarks to examine the cache behavior of all SMs.

6 Journal of The Korea Society of Computer and Information

Type Application Abbr IPC L1D Pwr Num Inst

P DirXTextureCompr[22] DXTC 675.27 0.11 12365623428

P BinomialOptions[22] BIOP 820.25 0.18 8787834880

P MersenneTwister[22] MT 320.34 0.95 16657251699

P MonteCarlo[22] MON 558.84 1.41 885487448

P 3DLaplaceSolver[22] LPS 468.98 2.70 62488928

P StoreGPU[22] STO 345.36 0.30 115015681

P MUMmerGPU[22] MUM 161.31 6.74 21357289

P EstimatePInlineP[22] EIP 138.75 0.90 2271007971

P SingleAsianOptionP[22] SAOP 162.34 0.12 2807383317

P QuasiRandGenerator[22] QRG 572.53 0.41 7859453952

N FastWalshTransform[22] FWT 374.29 1.19 3657859072

N MergeSort[22] MER 519.81 2.14 12651411314

N Histogram[22] HIG 481.49 0.85 27008528592

N LIBORMonteCarlo[18] LIB 225.36 0.63 879452160

N BreadthFirstSearch[26] BFS 15.85 1.72 12299393

Table 2. Evaluated GPGPU applications

We find that the cache behavior among all of the L1D

caches of the GPU is almost similar. For example, Fig. 5

shows the number of cache accesses, the number of the

cache misses and the number of request fails at the L1D

among various SMs when BFS is executed. According to

these results, we can know that the L1D caches of GPU

exhibit similar cache behaviors. Therefore, the AdmL1D

can be applied for all of the SMs of the GPU.

IV. Experiments

We model the GPU with 15 shader cores connected to

6 memory controllers in this work. We use a detailed

GPGPU simulator (GPGPU-sim v3.2) [18] in our

evaluation. The configuration parameters are described in

Table 1. The simulator was modified to implement the

AdmL1D. We can see that the parameters for the baseline

are based on a generic NVIDIA GPU [2]. However, our

technique can be applied for all GPU architectures. We

use GPUWattch [28] to evaluate power consumption.

5.1 Simulation Methodology

We consider a wide range of GPGPU workloads, including

the applications from CUDA SDK [22], Rodinia [26] and

ISPASS [18] as summarized in Table 2. The workloads are

selected from simple to complex. Based on the characteristics

of applications, the applications are classified into 2 types,

Type-P and Type-N. For all benchmarks, the simulation is

done until the completion of the workloads.

The AdmL1D has to firstly recognize to which type the

currently-executed application is belonged, Type-P or

Type-N. We analyze the characteristics of the

applications in order to find out the appropriate

parameters for the AdmL1D by using 18 GPGPU

applications.

Parameter Value

SIMT Core

SIMT Width

Resources/Core

15 cores / 32 threads

1024 threads, 48 warps,

32768 registers

Shared memory

L1 Data Cache

L1 Inst. Cache

L2 Cache

48KB, 32 banks

16KB per core,

32-sets/4-ways, 128B line

2KB per core, 4-sets/4-ways

768KB, 128KB/bank,

64-sets/8-ways/6-banks,

128B line

Features
Coalescing enabled, 32

MSHRs/core

Scheduling
LRR warp scheduling, RR CTA

scheduling

Table 1. Configuration of simulated system

5.2 Performance Improvement

Fig. 6 presents the impact of the AdmL1D on GPU

performance for various GPGPU applications. The IPC is

normalized to the baseline GPU architecture. Compared to

the baseline, the AdmL1D provides performance

improvement by 9.4% on average for Type-N

applications. Remarkably, the performance improvement is

up to 40% for SPRO and 13% for BFS. The reason behind

the high IPC improvement is likely due to the very high

R-to-A ratios of these cases. This is reasonable because

high R-to-A ratio also represent high degree of negative

impact of the L1D on GPU performance. The performance

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs 7

Fig. 6 Performance of AdmL1D for various GPGPU workloads

Fig. 7 L1D power savings for various GPGPU workloads

for Type-P applications is maintained that proves the

ability of AdmL1D in predicting the performance impact of

L1D depending on the characteristics of applications and

accurately bypassing the L1D at runtime. Although the

L1D can harm the performance of many applications, it is

still important to GPUs. According to our experiments, the

performance of the GPU is degraded by 8.6% on average

when the GPU does not use the L1D for all applications.

5.3 Energy Efficiency

By bypassing the L1D when applications cannot benefit

from the L1D, the AdmL1D also provides significant

energy reduction of the GPU. Fig. 7 shows the

percentage of power savings at the L1D that the AdmL1D

can achieve. The results are normalized to the baseline.

On average, the AdmL1D can reduce up to 52.1% of the

L1D power consumption for Type-N applications. The

L1D power consumption in cases of PRED, FWT and LIB

can be saved more than 80%. Note that the AdmL1D also

provides 9.4% speedup for these applications. This

translates into 58.5% reduction of the L1D energy

consumption.

The power savings at the L1D contributes to the total

power savings of the GPU. We try to put our energy

savings in context of high level GPU power model. We

assume that a modern GPU chip consumes 150 Watts [27,

28]. If there is a third of this power is spent on leakage

[27, 28], dynamic power will be two thirds of the total

power, 100 Watts. The memory system usually consumes

30% of dynamic power and the SMs consume 70% of

dynamic power [12]. The L1D power is contributed to the

SM power because the L1D is private per SM. As our

detailed evaluation shows that the AdmL1D saves 52.1%

of the L1D power, roughly equivalent to 1% of the total

chip power for Type-N applications, this represents 2.1%

of SM power and 1.5% of chip-wide dynamic power, or

1.5 Watts. Because that L1 data cache is accessed almost

same with baseline architecture for Type-N applications,

By using our proposed architecture, unnecessary

accesses which occur dynamic power consumption can be

8 Journal of The Korea Society of Computer and Information

reduced. Our bypass technique improves the performance

of GPUs by preventing dynamic energy consumption due

to unnecessary accesses. Our proposed technique utilizes

the characteristics of workload in order to reduce the

number of accesses to L1 data cache by predicting data

reuse for each cache block. Note that in terms of energy

efficiency, our technique can improve further because it

also provides the speedup of 9.4%.

V. Conclusions

In this paper, we investigated the impact of L1D on the

performance of GPGPU applications. We observed that the

L1D does not always have positive effects on the

performance for many applications. The L1D even harms

the GPU performance for several applications. Therefore,

we proposed a mechanism that can bypass the L1D at

runtime when the mechanism recognizes that

currently-executed application cannot benefit from the

L1D. The decision of bypassing the L1D only depends on

the characteristics of executed applications. Our proposed

technique can provide two main advantages in terms of

performance improvement and energy savings without

slowing down any applications. Experimental evaluations

show that the proposed AdmL1D technique can improve the

performance of GPU by 9.4% on average and save up to

52.1% of the L1D power consumption. As our future work,

we will analysis the reasons on request fails at L1 data

cache and then apply appropriate information to improve

the proposed technique for high performance GPUs.

REFERENCES

[1] W. Jia, K. Shaw and M. Martonosi, “MRPB: Memory Request

Prioritization for Massively Parallel Processors,” in the

IEEE International Symposium on High Performance

Computer Architecture (HPCA), pp272-283, 2014.

[2] NVIDIA, “Whitepaper: NVIDIA’s Next Generation CUDA

Compute and Graphics Architecture: Fermi,” 2009.

[3] Y. Torres and A. Escribano, “Understanding the Impact

of CUDA Tuning Techniques for Fermi,” In High

Performance Computing and Simulation (HPCS), pp.

631-639, 2011.

[4] A. Jog, O. Kayiran, N. Nachiappan, A. Mishra, M. Kandermir,

O. Mutlu, R. Iyer and C. Das, “OWL: Cooperative Thread

Array Aware Scheduling Techniques for Improving

GPGPU Performance,” in the International Conference

on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pp. 395-406, 2013.

[5] S. Lee, A. Arunkumar and C. Wu, “CAWA: Coordinated

Warp Scheduling and Cache Prioritization for Critical Warp

Acceleration of GPGPU Workloads,” in the International

Symposium on Computer Architecture (ISCA), pp.

515-527, 2015.

[6] M. Lee, G. Kim, J. Kim, W. Seo, Y. Cho and S. Ryu.,

“iPAWS: Instruction-Issue Pattern-based Adaptive Warp

Scheduling for GPGPUs,” in the IEEE International

Symposium on High Performance Computer Architecture

(HPCA), pp. 370-381, 2016.

[7] V. Narasiman, M. Shebanow, C. Lee, R. Miftakhutdinov,

O. Mutlu and Y. Patt, “Improving GPU Performance via

Large Warps and Two-Level Warp Scheduling,” in the

IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp. 308-317, 2014.

[8] M. Gebhart, R. Johnson, D. Tarjan, S. Keckler, W. Dally,

E. Lindoholm and K. Skadron, “Energy-efficient

Mechanisms for Managing Thread Context in Throughput

Processors,” in the International Symposium on Computer

Architecture (ISCA), pp. 235-246, 2011.

[9] W. Fung, I. Sham, G. Yuan and T. Aamodt, “Dynamic

Warp Formation and Scheduling for Efficient GPU Control

Flow,” in the IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp. 407-420, 2007.

[10] M. Qureshi, A. Jaleel, Y. Patt, S. Steely and J. Emer,

“Adaptive Insertion Policies for High Performance

Caching,” in the International Symposium on Computer

Architecture (ISCA), pp. 381-391, 2007.

[11] C. T. Do, H. J. Choi, J. M. Kim and C. H. Kim, “A New

Cache Replacement Algorithm for Last-Level Caches

by Exploiting Tag-Distance Correlation of Cache Lines,”

in Microprocessors and Microsystems, 39(4), pp.

286-295, 2015.

[12] A. S. Leon, B. Langley and J. L. Shin, “The UltraSPARC

T1 Processor: CMT Reliability,” In Custom Integrated

Circuits Conference, pp. 555-562, 2006.

[13] T. Rogers, M. O’Connor and T. Aamodt, “Cache-consciou

s Wavefront Scheduling,” in the IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 72-83,

2012.

[14] NVIDIA, “NVIDA Tegra Multiprocessor Architecture,”

2010.

[15] Y. Wu, R. Rakvic, L. Chen, C. Miao, G. Chrysos and

J. Fang, “Compiler Managed Micro-cache Bypassing

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs 9

for High Performance EPIC Processors,” in the

IEEE/ACM International Symposium on Microarchitect

ure (MICRO), pp. 134–145, 2002.

[16] T. L. Johnson and W.-M. W. Hwu, “Run-time Adaptive

Cache Hierarchy Management via Reference Analysis,”

in the International Symposium on Computer

Architecture (ISCA), pp. 315–326, 1997.

[17] M. Kharbutli and D. Solihin, “Counter-based Cache

Replacement and Bypassing Algorithms,” in IEEE

Transactions on Computers, 57(4), pp. 433–447, 2008.

[18] A. Bakhola, G. Yuan, W. Fung, H. Wong and T. Aamodt,

“Analyzing CUDA Workloads Using a Detailed GPU

Simulator,” in the International Symposium on Analysis

of Systems and Software (ISPASS), pp.163-174, 2009.

[19] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache Bursts:

A New Approach for Eliminating Dead Blocks and

Increasing Cache Efficiency,” in the IEEE/ACM

International Symposium on Microarchitecture (MICRO),

pp. 222–233, 2008.

[20] D. Kirk and W. Hwu, “Programming Massively Parallel

Processors,” 2010.

[21] C. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. Steely

Jr. and J. Emer, “SHiP: Signature-based Hit Predictor

for High Performance Caching,” in the IEEE/ACM

International Symposium on Microarchitecture (MICRO),

pp. 430–441, 2011.

[22] NVIDA, CUDA SDK http://developer.nvidia.com/gpu-co

mputing-sdk.

[23] X. Chen, L. Chang, C. Rodrigues, J. Lv, Z. Wang, and

W. Hwu, “Adaptive Cache Management for

Energy-Efficient GPU Computing,” in the IEEE/ACM

International Symposium on Microarchitecture (MICRO),

pp.343-355, 2014.

[24] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero,

and A. Veidenbaum, “Improving Cache Management

Policies Using Dynamic Reuse Distances,” in the

IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp. 389–400, 2012.

[25] X. Xie, Y. Liang, Y. Wang, G. Sun and T. Wang,

“Coordinated Static and Dynamic Cache Bypassing for

GPUs,” in the IEEE International Symposium on High

Performance Computer Architecture (HPCA), pp.

76-88, 2015.

[26] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H.

Lee and K. Skadron, “Rodinia: A Benchmark Suite for

Heterogeneous Computing, ”intheIEEEInternationalSy

mposiumonWorkloadCharacterization,(IISWC), pp. 44–

54, 2009.

[27] S. Hong and H. Kim, “An Integrated GPU Power and

Performance Model,” in the International Symposium

on Computer Architecture (ISCA), pp. 280-289, 2010.

[28] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N.

Kim, T. Aamodt and V. Reddi, “GPUWattch: Enabling

Energy Optimizations in GPGPUs,” in the International

Symposium on Computer Architecture (ISCA), pp.

487-498, 2013.

Authors

Thuan Cong Do received the B.S. degree in

Electronics and Telecommunications from

Hanoi University of Science and

Technology, Hanoi, Vietnam in 2012, the

M.S. and Ph.D. degrees from Chonnam

National University, Gwangju, Korea in

2014 and 2018, respectively. He is currently a research

professor in the Department of Computer Science, Korea

University, Seoul, Korea. His research interests include

computer architecture, parallel processing,

microprocessors, embedded systems, and GPGPU.

Gwang Bok Kim received the B.S degree and

M.S in electronics and computer

engineering from Chonnam National

University, Gwangju, Korea in 2013 and

2015 respectively.He is currently a Ph.D

student at Chonnam National University.

His research interests include computer architecture, low

power systems, and GPGPU.

Cheol Hong Kim received the B.S. degree

in Computer Engineering from Seoul

National University, Seoul, Korea in 1998

and M.S. degree in 2000. He received the

Ph.D. in Electrical and Computer

Engineering from Seoul National University

in 2006. He worked as a senior engineer for SoC Laboratory

in Samsung Electronics, Korea from Dec. 2005 to Jan. 2007.

Now is working as professor at School of Electronics and

Computer Engineering, Chonnam National University,

Korea. His research interests include embedded systems,

mobile systems, computer architecture, SoC design, low

power systems, and multiprocessors.

