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Abstract

Modern graphics processing units (GPUs) have become one of the most attractive platforms in 

exploiting high thread level parallelism with the support of new programming tools such as CUDA and 

OpenCL. Recent GPUs has applied cache hierarchy to support irregular memory access patterns; 

however, L1 data cache (L1D) exhibits poor efficiency in the GPU. This paper shows that the L1D 

does not always positively affect the applications in terms of performance and energy efficiency for 

the GPU. The performance of the GPU is even harmed by using the L1D for lots of applications. Our 

proposed technique exploits the characteristics of the currently-executed applications to predict the 

performance impact of the L1D on the GPU and then decides whether to continuously use the cache 

for the application or not. Our experimental results show that the proposed technique improves the 

GPU performance by 9.4% and saves up to 52.1% of the power consumption in the L1D.
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I. Introduction

Modern Graphics Processing Units (GPUs) are 

employed for handling not only graphics but also 

general-purpose computations to utilize huge hardware 

resources, known as General Purpose Computing on 

Graphics Processing Units (GPGPUs). Cache memories 

have been employed in recent GPUs to support diverse 

access patterns, which are frequently exhibited in 

general-purpose applications. In general, caches can 

deliver performance improvement to the GPU for a 

majority of applications; however, GPU caches have to 

confront with many challenges caused by the limitations 

of memory subsystem as well as cache hardware budget. 

In addition, the design of GPU caches is still based on the 

latency-optimized CPU caches [1] while the number of 

memory requests issued by GPGPU applications is much 

larger than the number issued by CPU applications. 

Consequently, the low per-thread capacity and low 

associativity of GPU caches can cause a system 

bottleneck and finally performance degradation [2, 3].

In this work, we show that the L1D can harm the 

performance of many other applications, even worse than 

a no-L1D GPU. Furthermore, inappropriate usage of the 

L1D consumes unnecessary energy for several 

applications. Based on these observations, this paper 

proposes a new mechanism (called AdmL1D) that is able 

to switch off the L1D in the GPU depending on the 

characteristics of the currently-executed applications. 

The proposed AdmL1D tracks several parameters 

representing the characteristics of the currently-executed 

application during its execution time, and then exploits 

these parameters as a hint to predict the impact of the 

L1D on the GPU performance. The proposed mechanism 
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makes the decision about either continuously using or 

switching off the cache. Our experiments show that the 

proposed AdmL1D technique can improve the overall GPU 

performance and significantly reduce the L1D energy 

consumption for applications those cannot benefit from 

the L1D. The simulation results show that the AdmL1D 

provides a speedup of 9.4% over the baseline and saves 

52.1% L1D power consumption on average. Moreover, the 

AdmL1D does not degrade the performance for all 

simulated applications.

The rest of this paper is organized as follows. Section 

2 discusses related work. We briefly describe the GPU 

architecture and our motivation in Section 3. Section 4 

presents the proposed L1 data cache bypassing technique 

for GPUs. Section 5 describes simulation methodology 

and detailed experimental results. Finally, Section 6 

concludes this paper.

II. Related Work

1. Related works

Recent GPUs have been widely adopted to handle 

general-purpose applications as well as graphics 

applications. A large number of works have been 

proposed with the aim at fully utilizing the potentials of 

GPU hardware resources while a fewer works have 

focused on the energy reduction of the GPU. Warp/CTA 

scheduling has gained the most attention due to their vital 

role in improving the GPU performance. Various 

scheduling schemes were proposed to increase the 

utilization of GPU hardware resources [4, 5, 6, 7, 8]. 

Control-flow divergence is also one of the main problems 

in up-to-date GPU architectures. Compared to other 

techniques, Fung et al. [9] proposed one of the most 

effective techniques for control-flow divergence problem, 

which combine the threads from different warps to 

address the hardware underutilization caused by branch 

divergence. 

The hardware budget for GPU caches limits the 

effectiveness of cache memory in handling irregular 

memory accesses. For this reason, proposing efficient 

cache management techniques for the GPU is still 

challenging. Recently, several works return to a 

traditional cache bypassing solution for selectively 

bypassing memory requests. Cache bypassing has been 

widely applied to CPUs and is recognized as an effective 

method to mitigate cache contention and resource 

congestion. In general, cache-bypassing techniques can 

be classified into two types of approaches including static 

[15] and dynamic [16, 17, 19, 21]. Jia et al. [1] proposed 

a hardware structure called memory request prioritization 

buffer (MRPB), which employs request reordering and 

cache bypassing, to avoid a system bottleneck in GPU 

caches. Meanwhile, Chen et al. [23] and Duong et al. 

[24] proposed an adaptive cache management technique 

by combining the protection distance (PD) with cache 

bypassing to improve the cache performance. Xie et al. 

[25] proposed a coordinated static and dynamic cache 

bypassing technique to identify the global loads that 

indicate strong preferences for caching or bypassing 

through profiling.

III. Background

3.1 Baseline GPU Architecture

This section briefly describes the baseline GPU 

architecture, which is based on a typical NVIDIA GPU. 

Further details on these architectures can be found in 

previous works [9, 13]. The GPU consists of many 

streaming multiprocessors (SMs); each typically has SIMT 

(Single Instruction Multiple Threads) lanes of 32. Inside 

the GPU, an interconnection network is used to connect 

SMs together. The powerful computation ability of the 

GPU partly comes from a huge register file supporting 

parallel computation. With the on-chip register file, each 

SM can accommodate a large number of threads. Similar 

to CPUs, the GPU also have several special function units 

(SFUs) and Load/Store units (L/SUs), which are 

responsible for executing instructions. 

The CUDA platform is used to parallelize the 

applications. A CUDA application typically consists of 

many kernels, each kernel includes groups of threads 

known as CTAs. Within a CTA, threads are grouped into 

warps of 32 threads, to be executed in lockstep fashion 

with one instruction at one time. A CTA is an abstraction 

that is required to encapsulate all synchronization and 

barrier primitives among warps [20], helping CTAs to be 

executed on SM in any order. Scheduling in a GPU is 

performed as three-step process. In the first step, a 

kernel is launched on the GPU. Next, the global CTA 
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scheduler (e.g. GigaThread [14]) is responsible for 

assigning CTAs to all available SMs in the second step. 

CTAs are assigned according to a simple round-robin 

fashion. Hardware resources limit the maximum number 

of CTAs assigned per SM [18]. After the assignment of 

CTAs, in the third step, warps associated with the 

launched CTAs are scheduled to SIMT lanes of the 

corresponding SM. 

The baseline GPU has multiple levels of memories, 

from L1 memories to DRAM. Each SM contains various 

types of on-chip caches, including special purpose caches 

(e.g. read-only, texture, constant and data). The L1D is 

private per-SM and used to support irregular data 

accesses. All threads of sibling warps can share L1 

memories. Meanwhile, all of the CTAs in a kernel can 

access the shared L2 cache and off-chip DRAM. Each 

memory controller is associated with a slice of shared L2 

cache bank. Memory controllers are responsible for 

scheduling memory requests caused by L2 cache miss to 

the DRAM. In the baseline GPU, the L1D works as the 

central point of coherency since the SIMD cores are 

connected to interconnection network through L1Ds. In 

both cache levels, missed requests are recorded by the 

Miss Status Holding Registers (MSHRs) and then sent to 

the next level of the memory hierarchy [18].

3.2 Motivation

In general, many previous works [16, 21] supposed 

that general-purpose applications take advantage from 

cache memories, especially from the L1D in terms of 

performance. However, we cannot be sure that this point 

of view is always correct in GPUs. We suppose that the 

GPU caches usually have unpredictable impact on the 

performance. In this work, we only focus on the 

performance impact of the L1D on general-purpose 

applications except graphics applications. We analyze the 

performance of several applications when they are 

executed on the GPU with and without the L1D. We use 

GPGPU-sim [18] to model NVIDIA-like GPU and 

benchmarks from CUDA SDK [22], Rodinia [26] and 

ISPASS [18] in this work.

Fig. 1(a) shows the performance of general-purpose 

applications executed on the GPU without L1D normalized 

to the baseline. Note that the GPU without L1D means that 

all memory requests to the L1D will be directly forwarded 

to next level of memory hierarchy (e.g. L2 cache). Fig. 1(b) 

presents the miss rates of the L1D when applications are 

executed on the GPU with L1D. From these figures, although 

the L1D has positive impact in the GPU memory architecture 

for some of applications, it can even harm the performance 

of some other applications. For example, in the case of FWT, 

it cannot gain any performance advantage from the L1D 

despite the fact that more than 30% of memory requests 

hit the L1D. However, with a similar hit rate, SNET even 

benefits from bypassing the L1D. On the other hand, the 

performance of LPS is reduced when GPU does not employ 

the L1D, as we expected. Based on these results, we 

classify the applications into two types depending on the 

advantage they get from the L1D. Type-P denotes the 

applications that the L1D has positive performance impact 

while Type-N represents the applications that the L1D has 

non-positive performance impact. According to these 

results, we can know that the impact of L1D on the 

performance of general-purpose applications is 

unpredictable.

(a) Normalized IPC

(b) L1D miss rate

Fig. 1. Normalized IPC and L1D miss rates for GPGPU 

workloads

IV. Proposed Technique

The number of times memory requests cannot be 
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Fig. 3. Pipeline architecture at MEM stage with proposed AdmL1D 

accepted by the L1D (req-fail-num) during execution time 

called warm-up-period is monitored. We find that the 

ratio of the req-fail-num to the number of the L1D cache 

accesses (L1D-acc-num), called R-to-A ratio, can 

represent the cache efficiency well at run time. A 

memory request is not handled due to the unavailability of 

necessary resources, for example, the cache space is all 

reserved or the miss queue is full. As the hardware 

budget for the L1D is too small compared to the number 

of memory requests from many SMs of the GPU, a large 

number of memory requests cannot be processed and 

have to retried in next cycles. When the number of 

memory requests not handled is greater than the 

threshold, it causes pipeline stalls and degrades the 

performance. Therefore, the req-fail-num and 

L1D-acc-num parameters are tracked and used to 

evaluate the efficiency of the L1D for the AdmL1D.

Fig. 2 represents the R-to-A ratio of various 

applications over one million cycles. We varied the 

sampling period length depending on the length of the 

execution time of applications. From this graph, we can 

observe that there is a wide gap between the R-to-A 

ratio of Type-P applications and Type-N applications. 

Type-P applications (e.g. MON, LPS and QRG) can benefit 

from the L1D, therefore, they have very low R-to-A 

ratios, around zero. Meanwhile, Type-N applications (e.g. 

FWT, SNET and BFS) those cannot benefit from the L1D, 

have high R-to-A ratios. Furthermore, Fig. 2 shows that 

the R-to-A ratio of all applications is stable at the 

beginning of execution for a long period of time. Based 

on our experiments, we empirically set cut-off of the 

R-to-A ratio for 3, called B-threshold. This means that 

an application with the R-to-A ratio greater than 3 is 

considered as Type-N applications. When the AdmL1D is 

applied, the req-fail-num and L1D-acc-num parameters 

are tracked during the warm-up-period.

Fig. 2. R-to-A ratio

To prevent the performance degradation due to the 

L1D, we propose a method that is able to identify what 

type of applications cannot benefit from the L1D and what 

type of applications can benefit from the L1D. When the 

identification step finishes, the proposed AdmL1D decides 

to continue employing or bypassing the L1D. Note that 

the identification process needs to provide an accurate 

result in a short period to maximize the potential 

performance gains of the proposed technique. The right 

side of Fig. 3 illustrates the detailed mechanism with the 
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Fig. 4. Diagram of AdmL1D 

AdmL1D at the MEM stage. Many complicated cache 

management techniques [10, 11, 17] cannot demonstrate 

their effectiveness due to the limited hardware budget of 

L1D. We suppose that all bypassing the L1D when GPU is 

executing applications on which the L1D has negative 

performance impact could provide two potential 

advantages including performance improvement and 

energy savings. The challenge of the proposed technique 

is to recognize the negative impact of the L1D on the 

application’s performance at runt time. As shown in the 

Fig. 4, the GPU cache management is modified with extra 

hardware logic, AdmL1D unit. The AdmL1D consists of 

three major parts: (1) a hardware logic unit that is used 

for setting up initial parameters, (2) a hardware logic that 

is used to count the number of request fails 

(req-fail-num) and L1D accesses (L1D-acc-num) and 

then make the R-to-A-ratio (the ratio of req-fail-nums to 

L1D-acc-num), and (3) a comparator that compares the 

R-to-A-ratio with the B-threshold to make the bypassing 

decision. The output of AdmL1D unit decides whether the 

memory requests can access the L1D or not.

The hardware logic unit (1) is responsible for setting 

the warm-up-period. During this period, the AdmL1D unit 

collects the information about the L1D cache usage. 

warm-up-period is an important parameter that can affect 

the efficiency of the proposed technique. The value of 

this parameter depends on the execution time of each 

application and is set based on the experiments with the 

support of compiler. The execution time of the application 

can be known exactly after the application is completed. 

However, with the support of modern compilers, the 

calculation of execution time can be simply obtained. For 

instance, compliers can calculate the number of 

instructions when the application is compiled, thus, the 

execution time can be estimated quite accurately. Note 

that the AdmL1D does not need an exact estimation of 

application’s execution time. We can use two counters for 

the hardware logic unit (2) to track the req-fail-num and 

L1D-acc-num. The counting process is carried out during 

the warm-up-period. In fact, there are several 

parameters instead of cache-hit rates to predict the 

cache usage, but we see that req-fail-num reflects the 

most accurate cache usage information in a short period. 

At the end of warm-up-period, the R-to-A ratio is 

calculated and then it is compared to the B-threshold to 

make the decision about bypassing the L1D. The 

hardware logic unit (3) can be simply implemented by 

using a comparator. If R-to-A ratio is greater than 

B-threshold, since then all memory requests will bypass 

the L1D and be forwarded to the lower level memories, 

meaning that the L1D is disabled. Otherwise, memory 

requests access the L1D as normal.

Fig. 5. L1D behavior across SMs of GPU when BFS is executed

Modern GPU architectures contain many SMs, which 

have the same hardware logic. Therefore, any proposal at 

SM-level is usually applied for all SMs of the GPU. 

However, same hardware logic does not guarantee the 

same cache behavior when applications are executed. In 

case the L1D cache behavior of each SM is very 

different, it can affect the correctness of our proposed 

mechanism. In this work, we experimented on many 

benchmarks to examine the cache behavior of all SMs. 
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Type Application Abbr IPC L1D Pwr Num Inst

P DirXTextureCompr[22] DXTC 675.27 0.11 12365623428

P BinomialOptions[22] BIOP 820.25 0.18 8787834880

P MersenneTwister[22] MT 320.34 0.95 16657251699

P MonteCarlo[22] MON 558.84 1.41 885487448

P 3DLaplaceSolver[22] LPS 468.98 2.70 62488928

P StoreGPU[22] STO 345.36 0.30 115015681

P MUMmerGPU[22] MUM 161.31 6.74 21357289

P EstimatePInlineP[22] EIP 138.75 0.90 2271007971

P SingleAsianOptionP[22] SAOP 162.34 0.12 2807383317

P QuasiRandGenerator[22] QRG 572.53 0.41 7859453952

N FastWalshTransform[22] FWT 374.29 1.19 3657859072

N MergeSort[22] MER 519.81 2.14 12651411314

N Histogram[22] HIG 481.49 0.85 27008528592

N LIBORMonteCarlo[18] LIB 225.36 0.63 879452160

N BreadthFirstSearch[26] BFS 15.85 1.72 12299393

Table 2. Evaluated GPGPU applications

We find that the cache behavior among all of the L1D 

caches of the GPU is almost similar. For example, Fig. 5 

shows the number of cache accesses, the number of the 

cache misses and the number of request fails at the L1D 

among various SMs when BFS is executed. According to 

these results, we can know that the L1D caches of GPU 

exhibit similar cache behaviors. Therefore, the AdmL1D 

can be applied for all of the SMs of the GPU.

IV. Experiments

We model the GPU with 15 shader cores connected to 

6 memory controllers in this work. We use a detailed 

GPGPU simulator (GPGPU-sim v3.2) [18] in our 

evaluation. The configuration parameters are described in 

Table 1. The simulator was modified to implement the 

AdmL1D. We can see that the parameters for the baseline 

are based on a generic NVIDIA GPU [2]. However, our 

technique can be applied for all GPU architectures. We 

use GPUWattch [28] to evaluate power consumption.

5.1 Simulation Methodology

We consider a wide range of GPGPU workloads, including 

the applications from CUDA SDK [22], Rodinia [26] and 

ISPASS [18] as summarized in Table 2. The workloads are 

selected from simple to complex. Based on the characteristics 

of applications, the applications are classified into 2 types, 

Type-P and Type-N. For all benchmarks, the simulation is 

done until the completion of the workloads.

The AdmL1D has to firstly recognize to which type the 

currently-executed application is belonged, Type-P or 

Type-N. We analyze the characteristics of the 

applications in order to find out the appropriate 

parameters for the AdmL1D by using 18 GPGPU 

applications.

Parameter Value

SIMT Core

SIMT Width

Resources/Core

15 cores / 32 threads

1024 threads, 48 warps, 

32768 registers

Shared memory

L1 Data Cache

L1 Inst. Cache

L2 Cache

48KB, 32 banks

16KB per core, 

32-sets/4-ways, 128B line

2KB per core, 4-sets/4-ways

768KB, 128KB/bank, 

64-sets/8-ways/6-banks, 

128B line

Features
Coalescing enabled, 32 

MSHRs/core

Scheduling
LRR warp scheduling, RR CTA 

scheduling

Table 1. Configuration of simulated system

5.2 Performance Improvement

Fig. 6 presents the impact of the AdmL1D on GPU 

performance for various GPGPU applications. The IPC is 

normalized to the baseline GPU architecture. Compared to 

the baseline, the AdmL1D provides performance 

improvement by 9.4% on average for Type-N 

applications. Remarkably, the performance improvement is 

up to 40% for SPRO and 13% for BFS. The reason behind 

the high IPC improvement is likely due to the very high 

R-to-A ratios of these cases. This is reasonable because 

high R-to-A ratio also represent high degree of negative 

impact of the L1D on GPU performance. The performance 
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Fig. 6 Performance of AdmL1D for various GPGPU workloads

Fig. 7 L1D power savings for various GPGPU workloads

for Type-P applications is maintained that proves the 

ability of AdmL1D in predicting the performance impact of 

L1D depending on the characteristics of applications and 

accurately bypassing the L1D at runtime. Although the 

L1D can harm the performance of many applications, it is 

still important to GPUs. According to our experiments, the 

performance of the GPU is degraded by 8.6% on average 

when the GPU does not use the L1D for all applications.

5.3 Energy Efficiency

By bypassing the L1D when applications cannot benefit 

from the L1D, the AdmL1D also provides significant 

energy reduction of the GPU. Fig. 7 shows the 

percentage of power savings at the L1D that the AdmL1D 

can achieve. The results are normalized to the baseline. 

On average, the AdmL1D can reduce up to 52.1% of the 

L1D power consumption for Type-N applications. The 

L1D power consumption in cases of PRED, FWT and LIB 

can be saved more than 80%. Note that the AdmL1D also 

provides 9.4% speedup for these applications. This 

translates into 58.5% reduction of the L1D energy 

consumption.

The power savings at the L1D contributes to the total 

power savings of the GPU. We try to put our energy 

savings in context of high level GPU power model. We 

assume that a modern GPU chip consumes 150 Watts [27, 

28]. If there is a third of this power is spent on leakage 

[27, 28], dynamic power will be two thirds of the total 

power, 100 Watts. The memory system usually consumes 

30% of dynamic power and the SMs consume 70% of 

dynamic power [12]. The L1D power is contributed to the 

SM power because the L1D is private per SM. As our 

detailed evaluation shows that the AdmL1D saves 52.1% 

of the L1D power, roughly equivalent to 1% of the total 

chip power for Type-N applications, this represents 2.1% 

of SM power and 1.5% of chip-wide dynamic power, or 

1.5 Watts. Because that L1 data cache is accessed almost 

same with baseline architecture for Type-N applications, 

By using our proposed architecture, unnecessary 

accesses which occur dynamic power consumption can be 
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reduced. Our bypass technique improves the performance 

of GPUs by preventing dynamic energy consumption due 

to unnecessary accesses. Our proposed technique utilizes 

the characteristics of workload in order to reduce the 

number of accesses to L1 data cache by predicting data 

reuse for each cache block. Note that in terms of energy 

efficiency, our technique can improve further because it 

also provides the speedup of 9.4%.

V. Conclusions

In this paper, we investigated the impact of L1D on the 

performance of GPGPU applications. We observed that the 

L1D does not always have positive effects on the 

performance for many applications. The L1D even harms 

the GPU performance for several applications. Therefore, 

we proposed a mechanism that can bypass the L1D at 

runtime when the mechanism recognizes that 

currently-executed application cannot benefit from the 

L1D. The decision of bypassing the L1D only depends on 

the characteristics of executed applications. Our proposed 

technique can provide two main advantages in terms of 

performance improvement and energy savings without 

slowing down any applications. Experimental evaluations 

show that the proposed AdmL1D technique can improve the 

performance of GPU by 9.4% on average and save up to 

52.1% of the L1D power consumption. As our future work, 

we will analysis the reasons on request fails at L1 data 

cache and then apply appropriate information to improve 

the proposed technique for high performance GPUs.
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