• 제목/요약/키워드: modeling with geometry

검색결과 453건 처리시간 0.032초

형상 모델링을 위한 음함수 객체의 설계 및 구현 (The Design and Implementation of Implicit Object Classes for Geometric Modeling System)

  • 박상근;정성엽
    • 한국CDE학회논문집
    • /
    • 제13권3호
    • /
    • pp.187-199
    • /
    • 2008
  • This paper describes a C++ class hierarchy of implicit objects for geometry modeling and processing. This class structure provides a software kernel for integrating many various models and methods found in current implicit modeling areas. The software kernel includes primitive objects playing a role of unit element in creating a complex shape, and operator objects used to construct more complex shape of implicit object formed with the primitive objects and other operators. In this paper, class descriptions of these objects are provided to better understand the details of the algorithm or implementation, and its instance examples to show the capabilities of the object classes for constructive shape geometry. In addition, solid modeling system shown as an application example demonstrates that the proposed implicit object classes allow us to carry out modern solid modeling techniques, which means they have the capabilities to extend to various applications.

난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성 (Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame)

  • 이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

인체장기의 정밀한 NURBS 곡면 모델링 사례연구 (A Case Study on Precise NURBS Modeling of Human Organs)

  • 김호찬;배용환;서태원;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.915-918
    • /
    • 2005
  • Advances in Information Technology and in Biomedicine have created new uses for CAD technology with many novel and important biomedical applications. Such applications can be found, for example, in the design and modeling of orthopedics, medical implants, and tissue modeling in which CAD can be used to describe the morphology, heterogeneity, and organizational structure of tissue and anatomy. CAD has also played an important role in computer-aided tissue engineering for biomimetic design, analysis, simulation and freeform fabrication of tissue scaffolds and substitutes. And all the applications require precision geometry of the organs or bones of each patient. But the geometry information currently used is polygon model with none solid geometry and is so rough that it cannot be utilized for accurate analysis, simulation and fabrication. Therefore a case study is performed to deduce a transformation method to build free form surface from a rough polygon data or medical images currently used in the application. This paper describes the transformation procedure in detail and the considerations for accurate organ modeling are discussed.

  • PDF

기하와 기하교육과정 변천과 21세기 기하교육의 방향 (The New Directions of Secondary Geometry Curriculum on Historical Perspectives)

  • 장경윤
    • 한국수학사학회지
    • /
    • 제21권4호
    • /
    • pp.105-126
    • /
    • 2008
  • 본 논문은 교양교육과 수학교육에 필수적인 교과로 여겨오던 학교기하가 20세기 초부터 한 세기 동안 학문적 경향과 사회적 변화에 따라 어떻게 변천되어 왔는가를 역사적으로 개관하고 21세기 기하교육과정의 방향을 조망하였다. 21세기 CAD 등 컴퓨터 소프트웨어와 로봇산업 등은 직업과 전문분야에서 기하의 역할과 학교기하의 지식이나 기능도 바꾸고 있다. 응용과 모델링 측면 강화, 추론과 문제해결 영역확대, 디자인과 관련된 요소 강화로 요약되는 21세기 기하교육 방향에서 우리나라 중등학교 기하교육에 시사점을 찾고자 하였다.

  • PDF

자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링 (Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels)

  • 정연찬
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.

신속성형기술 전용 벌집구조 형상 모델링 기술 개발 (Geometric Modeling of Honeycomb Structural Geometry for Solid Freeform Fabrication)

  • 지해성
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.180-189
    • /
    • 1999
  • Solid freeform fabrication technology, widely known as rapid prototyping an rapid tooling, can create physical part directly from digital model by accumulating layers of a given material. Providing a tremendous flexibility of a part geometry that they can fabricate, these technologies present a opportunity or the creation of new products that can not be made with existing technologies. For this to be possible, however, various design environments including different fabrication processes needs to be considered at the time of design, and finding an appropriate design solution for the new product by combining necessary design communications become increasingly complex as environmental condition become diverse. This paper proposes a geometric modeling paradigm for design and fabrication of a new product, honeycomb structural geometry.

  • PDF

Prediction of Fluid-borne Noise Transmission Using AcuSolve and OptiStruct

  • Barton, Michael;Corson, David;Mandal, Dilip;Han, Kyeong-Hee
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.557-561
    • /
    • 2014
  • In this work, Altair Engineering's vibroacoustic modeling approach is used to simulate the acoustic signature of a simplified automobile in a wind tunnel. The modeling approach relies on a two step procedure involving simulation and extraction of acoustic sources using a high fidelity Computational Fluid Dynamics (CFD) simulation followed by propagation of the acoustic energy within the structure and passenger compartment using a structural dynamics solver. The tools necessary to complete this process are contained within Altair's HyperWorks CAE software suite. The CFD simulations are performed using AcuSolve and the structural simulations are performed using OptiStruct. This vibroacoustics simulation methodology relies on calculation of the acoustic sources from the flow solution computed by AcuSolve. The sources are based on Lighthill's analogy and are sampled directly on the acoustic mesh. Once the acoustic sources have been computed, they are transformed into the frequency domain using a Fast Fourier Transform (FFT) with advanced sampling and are subsequently used in the structural acoustics model. Although this approach does require the CFD solver to have knowledge of the acoustic simulation domain a priori, it avoids modeling errors introduced by evaluation of the acoustic source terms using dissimilar meshes and numerical methods. The aforementioned modeling approach is demonstrated on the Hyundai Simplified Model (HSM) geometry in this work. This geometry contains flow features that are representative of the dominant noise sources in a typical automobile design; namely vortex shedding from the passenger compartment A-pillar and bluff body shedding from the side view mirrors. The geometry also contains a thick poroelastic material on the interior that acts to reduce the acoustic noise. This material is modeled using a Biot material formulation during the structural acoustic simulation. Successful prediction of the acoustic noise within the HSM geometry serves to validate the vibroacoustic modeling approach for automotive applications.

  • PDF

수평필릿용접의 용접부 형상을 예측하기 위한 수학적 모델링 및 열전달 해석에 관한 연구 (A study on mathematical modeling and heat transfer analysis to predict weld bead geometry in horizontal fillet welding)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • 제14권6호
    • /
    • pp.58-67
    • /
    • 1996
  • The horizontal filet welding is prevalently used in heavy and ship building industries to join the parts. The phenomena occurring in the horizonal fillet welding process are very complex and highly non-linear, so that its analysis is relatively difficult. Furthermore, various kinds of weld defect such as undercut, overlap, porosity. excess weld metal and incomplete penetration can be induced due to improper welding conditions. Among these defects, undercut, overlap and excess weld metal appear frequently in horizontal filet welding. To achieve a satisfactory weld bead geometry without weld defects, it is necessary to study the effect of welding conditions in the weld bead geometry. For analyzing the weld bead geometry with and without weld defects in horizontal fillet welding, a mathematical model was proposed in conjunction with a two-dimensional heat flow analysis adopted for computing the melting tone in . base metal. The reliability of the proposed model was evaluated through experiments. which showed that the proposed model was very effective for predicting the weld bead shape with or without weld defects in horizontal fillet welding.

  • PDF

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(I)
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

Cutting Simulation을 이용한 End-milling Cutter의 모델링 및 제작에 관한 연구 (End-mill Modeling and Manufacturing Methodology via Cutting Simulation)

  • 김재현;김종한;고태조;박정환
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.151-159
    • /
    • 2006
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data f3r fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data for machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used for virtual cutting test and analysis as well.