• Title/Summary/Keyword: modeling procedures

Search Result 414, Processing Time 0.029 seconds

Development of a Spatial Subdivision Technique using BIM for Space Syntax Analysis of a Korean Traditional House (BIM을 이용한 전통 한옥의 공간구문 분석을 위한 공간분할기법 개발)

  • Jeong, Sang Kyu
    • KIEAE Journal
    • /
    • v.10 no.3
    • /
    • pp.57-62
    • /
    • 2010
  • To effectively use Building Information Modelling (BIM) dealing with semantic information including the entities of building components, the information about building components should be standardized. Like standardized modern buildings. in the past, Korean traditional houses were built according to strict procedures and formats. Therefore, if the Korean traditional house are modelled by using BIM,. not only the Korean traditional house of good quality will be built quickly and cheaply, but also spaces in the existing Korean traditional house will be easily analyzed. However, when analyzing spaces of the Korean traditional house using Space Syntax, some problems are caused in dividing outdoor space such as yard with unclear boundaries, unlike indoor space with clear boundaries surrounded by walls. These comes from the fact that researchers have subjectively divided a space in the house into convex spaces as units for Space Syntax analysis. Therefore, this study aims to develop an objective and rational spatial subdivision technique for Space Syntax analysis of a Korean traditional house modelled by using BIM. We could objectively and reasonably divide a Korean traditional house space into convex spaces by recognizing the building components in the house modelled in the form of Industry Foundation Classes(IFC). Depending on the connection of convex spaces allocated in the spatial subdivision technique, j-graph in Space Syntax could be drawn and the measurements of spatial configurations could be determinded. Through the developed technique, the social properties including the cultural and philosophical aspects of Korean people was identified by measuring the spatial configurations of Korean traditional house. The developed technique will serve as useful means to help architects to find an appropriate purpose of each space for sustainable architecture on the basis of the spatial and social relationships in buildings or urban systems.

Visual Performances of the Corrected Navarro Accommodation-Dependent Finite Model Eye (안구의 굴절능 조절을 고려한 수정된 Navarro 정밀모형안의 시성능 분석)

  • Choi, Ka-Ul;Song, Seok-Ho;Kim, Sang-Gee
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.337-344
    • /
    • 2007
  • In recent years, there has been rapid progress in different areas of vision science, such as refractive surgical procedures, contact lenses and spectacles, and near vision. This progress requires a highly accurate modeling of optical performance of the human eyes in different accommodation states. A new novel model-eye was designed using the Navarro accommodation-dependent finite model eye. For each of the vergence distances, ocular wavefront error, accommodative response, and visual acuity were calculated. Using the new model eye ocular wavefront error, accommodation dative response, and visual acuity are calculated for six vergence stimuli, -0.17D, 1D, 2D, 3D, 4D and -5D. Also, $3^{rd}\;and\;4^{th}$ order aberrations, modulation transfer function, and visual acuity of the accommodation-dependent model eye were analyzed. These results are well-matched to anatomical, biometric, and optical realities. Our corrected accommodation-dependent model-eye may provide a more accurate way to evaluate optical transfer functions and optical performances of the human eye.

A Review of Research on Augmented Reality Based Educational Contents for Students with Autism Spectrum Disorders (자폐 스펙트럼 장애 학생 대상 증강현실기반 교육 콘텐츠 연구에 대한 고찰)

  • Son, Ji-Young
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.35-46
    • /
    • 2017
  • The purpose of the study was to review the recent literature on applying augmented reality based educational contents for students with autism spectrum disorders and to identify research trends and implications. The search procedures through the Web-database system were implemented to find the proper research and a total of 12 studies were included in this review. The results indicated that most of subjects were elementary school-age children, also single subject design was mostly implemented. Mobile devices were used mostly for augmented reality, and most of data collection methods was behavioral observation. Results founded several contents types: objects manipulation, manipulation for self-modeling, on-site problem solving program, and location-based learning guide. Additionally, the results indicated that the educational effectiveness was the improvements of social behaviors, play and imitation behaviors, and emotion recognition. Furthermore, considerations to develop and apply augmented reality based educational contents for students with autism spectrum disorders were suggested.

Verification of Wavefront Inversion Scheme via Signal Subspace Comparison Between Physical and Synthesized Array Data in SAT Imaging (SAR Imaging에서 Physical Array와 합성 Array 신호의 Subspace 비교를 통한 Wavefront Inversion 기법 입증)

  • 최정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.34-41
    • /
    • 1999
  • Unlike the traditional radar system, Synthetic Aperture Radar(SAR) system is capable of imaging a target scene to ceertain degree of cross-range resolution. And this resolution is mainly depends on the size of aperture synthesized. Thus, a good system model and inversion scheme should be developed to actually give effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion schemes for SAR imaging, we used an inversion scheme called wavefront reconstruction which has no approximation in wave propagation analysis, and tried to verify whether the collected data with synthesized aperture actually give the same support as that with physical aperture in the same size. To do this, we performed a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparisons and numerical analysis using Gram-Schmidt procedures have been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry. This result strongly supports the previously proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.367-377
    • /
    • 2020
  • Incremental dynamic analysis (IDA) widely uses for the collapse risk assessment procedures of buildings. In this study, an IDA-based collapse risk assessment methodology is proposed, which employs a novel approach for detecting the near-collapse (NC) limit state. The proposed approach uses the modal pushover analysis results to calculate the maximum inter-story drift ratio of the structure. This value, which is used as the upper-bound limit in the IDA process, depends on the structural characteristics and global seismic responses of the structure. In this paper, steel midrise intermediate moment resisting frames (IMRFs) have selected as case studies, and their collapse risk parameters are evaluated by the suggested methodology. The composite action of a concrete floor slab and steel beams, and the interaction between the infill walls and the frames could change the collapse mechanism of the structure. In this study, the influences of the metal deck floor and autoclaved aerated concrete (AAC) masonry infill walls with uniform distribution are investigated on the seismic collapse risk of the IMRFs using the proposed methodology. The results demonstrate that the suggested modified IDA method can accurately discover the near-collapse limit state. Also, this method leads to much fewer steps and lower calculation costs rather than the current IDA method. Moreover, the results show that the concrete slab and the AAC infill walls can change the collapse parameters of the structure and should be considered in the analytical modeling and the collapse assessment process of the steel mid-rise intermediate moment resisting frames.

Integrated CAD System for Ship and Offshore Projects

  • Suh, Heung-Won;Lee, Sung-Geun
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 2006
  • Nowadays major shipbuilding companies are trying to expand their business not only to shipbuilding but to offshore projects as well. DSME is one of them. DSME is trying to set up a flexible design and construction environment for shipbuilding and offshore construction in a single shipyard. The shipbuilding and offshore projects, however, have their unique technology but they need to be designed and constructed in one site. To support this new requirement, DSME has developed an integrated CAD system for ship and offshore projects. In this integrated design environment, the designers can design commercial ships and offshore projects in a flexible manner. Concurrent design is very important for ship and offshore design. As compared to the complexity of the product, the design period is quite short. In effect, the design system for the ship and offshore project has to support concurrent design. One essential point of concurrent design environment is a product model based design system. DSME has developed and implemented the 3D product model concurrent design environment based on Tribon M3. Tribon is a widely used CAD system in shipbuilding area that is developed by Tribon Solutions. DSME has both customized the Tribon system and developed in-house application systems to support its own design and production procedures. All the design objects are modeled in one common database to support concurrent design and accurate production. The major in-house development focused on the modeling automation and automatic drawing generation. During the drawing generation process many of the additional production information are also extracted from the 3D product model. In addition, several applications and functionalities have been developed to apply the shipbuilding based Tribon M3 system to offshore projects. The development of shape nesting, tubular connection, isometric drawing, grating nesting systems are the typical.

Refining and Validating a Two-stage and Web-based Cancer Risk Assessment Tool for Village Doctors in China

  • Shen, Xing-Rong;Chai, Jing;Feng, Rui;Liu, Tong-Zhu;Tong, Gui-Xian;Cheng, Jing;Li, Kai-Chun;Xie, Shao-Yu;Shi, Yong;Wang, De-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10683-10690
    • /
    • 2015
  • The big gap between efficacy of population level prevention and expectations due to heterogeneity and complexity of cancer etiologic factors calls for selective yet personalized interventions based on effective risk assessment. This paper documents our research protocol aimed at refining and validating a two-stage and web-based cancer risk assessment tool, from a tentative one in use by an ongoing project, capable of identifying individuals at elevated risk for one or more types of the 80% leading cancers in rural China with adequate sensitivity and specificity and featuring low cost, easy application and cultural and technical sensitivity for farmers and village doctors. The protocol adopted a modified population-based case control design using 72, 000 non-patients as controls, 2, 200 cancer patients as cases, and another 600 patients as cases for external validation. Factors taken into account comprised 8 domains including diet and nutrition, risk behaviors, family history, precancerous diseases, related medical procedures, exposure to environment hazards, mood and feelings, physical activities and anthropologic and biologic factors. Modeling stresses explored various methodologies like empirical analysis, logistic regression, neuro-network analysis, decision theory and both internal and external validation using concordance statistics, predictive values, etc..

A Study on the Establishment of a Production Pipeline Imported 3D Computer Graphics for Clay Characters (3D 컴퓨터그래픽을 도입한 클레이 캐릭터 제작 공정 개발에 관한 연구)

  • Kim, Jung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1245-1257
    • /
    • 2008
  • The establishment of a production pipeline imported 30 computer graphics is suggested in this paper to improve the efficiency of existing production pipeline of clay animation. The point is that the process of building clay characters that remains labor intensive among the existing procedures is replaced by the process of creating computer generated characters. In order to create characters out of clay by means of 30 computer graphics, a diffuse map and displacement map are made of an oil-based clay according to the UVW coordination of polygon modeling, which is the same color and kind of clay used to make a clay character. In addition, a panoramic HDRI recording system is developed to record the lighting information of shooting environment for miniature sets, which is imported in 3D computer graphic tools as digital light source. On account of the new production pipeline, a hyper realistic rendering image can be produced, and at the same time it improves the traditional pipeline of stop motion animation that is know-how based procedure of a complete artist by the engineering approach to the automatic process.

  • PDF

Evolutionary Optimization of Pulp Digester Process Using D-optimal DOE and RSM

  • Chu, Young-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.395-395
    • /
    • 2000
  • Optimization of existing processes becomes more important than the past as environmental problems and concerns about energy savings stand out. When we can model a process mathematically, we can easily optimize it by using the model as constraints. However, modeling is very difficult for most chemical processes as they include numerous units together with their correlation and we can hardly obtain parameters. Therefore, optimization that is based on the process models is, in turn, hard to perform. Especially, f3r unknown processes, such as bioprocess or microelectronics materials process, optimization using mathematical model (first principle model) is nearly impossible, as we cannot understand the inside mechanism. Consequently, we propose a few optimization method using empirical model evolutionarily instead of mathematical model. In this method, firstly, designing experiments is executed fur removing unecessary experiments. D-optimal DOE is the most developed one among DOEs. It calculates design points so as to minimize the parameters variances of empirical model. Experiments must be performed in order to see the causation between input variables and output variables as only correlation structure can be detected in historical data. And then, using data generated by experiments, empirical model, i.e. response surface is built by PLS or MLR. Now, as process model is constructed, it is used as objective function for optimization. As the optimum point is a local one. above procedures are repeated while moving to a new experiment region fur finding the global optimum point. As a result of application to the pulp digester benchmark model, kappa number that is an indication fur impurity contents decreased to very low value, 3.0394 from 29.7091. From the result, we can see that the proposed methodology has sufficient good performance fur optimization, and is also applicable to real processes.

  • PDF

Development of artificial neural network based modeling scheme for wind turbine fault detection system (풍력발전 고장검출 시스템을 위한 인공 신경망 기반의 모델링 기법 개발)

  • Moon, Dae Sun;Ra, In Ho;Kim, Sung Ho
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance procedures. Condition Monitoring System(CMS) can be used to aid plant owners in achieving these goals. In this work, systematic design procedure for artificial neural network based normal behavior model which can be applied for fault detection of various devices is proposed. Furthermore, to verify the design method SCADA(Supervisor Control and Data Acquisition) data from 850kW wind turbine system installed in Beaung port were utilized.

  • PDF