• Title/Summary/Keyword: modeling

Search Result 31,040, Processing Time 0.066 seconds

Hydrogeochemistry of Some Abandoned Metal Mine Creeks in the Hwanggangri Mining District, Korea : A Preliminary Study (황강리 광화대에 분포하는 일부 폐금속 광산수계의 수리지구화학적 특성 : 예비연구)

  • 이현구;이찬희;이종창
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.194-205
    • /
    • 1999
  • Hydrogeochemical variation and environmental isotope at the some abandoned metal mine (Sanggok, Keumsil, Jangpung and Samdeok) creeks of the Hwanggangri mining district were carried out based upon the physicochemical properties for surface water collected of February in 1998. Hydrogeochemical composition of the all water samples are characterized by the relatively significant enrichment of Ca$^{2}$, alkaline ions, N $O_3$$^{-}$ and Cl$^{-}$ in normal surface water, whereas the surface waters near the mining area are relatively enriched in Ca$^{2+$, Mg$^{2+}$, heavy metals. HC $O_3$$^{-}$ and S $O_4$$^{2-}$. Surface waters of the mining creek have low pH, high EC and extremely high concentrations of TDS compared with surface water of the non-mining creeks. The range of $\delta$D and $\delta$$^{18}$O values (SMOW) in the waters are shown in -65.0 to-71.2$\textperthousand$ and -9.1 to-10.2$\textperthousand$. The d($\delta$D-$\delta$$^{18}$O) value with those of water samples ranged from 7.3 to 10.9. These $\delta$D and $\delta$$^{18/}$ of the acid mine water are more heavy values than those of surface water. The values have revealed the positive correlation between isotopic compositions and major elements, because those $\delta$D and $\delta$$^{18}$O values increase with increasing TDS. HC $O_3$$^{-}$ , S $O_4$$^{2-}$ and Ca$^{2+}$ concentration. Using WATEQ4F, saturation index of albite calcite, dolomite and mostly clay minerals in water of the mining area show undersaturated and progressively evolved toward the equilibrium condition due to fresh water mixing, however, surface waters of the non-mining area are nearly saturated and/or supersaturated. Geochemical modeling showed that mostly toxic heavy metals within water in the mining creek may exist largely in the from of metal-sulfate (MS $O_4$$^{2-}$), free metal (M$^{2+}$/), C $O_3$$^{-}$ and/or OH$^{-}$ complex ions. Based on the geology, water chemistry and environmental istopic data the water compositions from the Sanggok and Keumsil mine creek (consist mainly of Cambro-Ordovician carbonate rocks of the Cho-seon Supergroup) show higher PH, Ca$^{2+}$, Mg$^{2+}$ , HC $O_3$$^{-}$ and more heavy $\delta$D and $\delta$$^{18}$O values than those from the Jangpung and Samdeok mine creek (consist of age -unknown metasedimentary rocks of the Ogcheon Supergroup and/or Jurassic grani-toids), but each of these waters represents a similar hydrogeochemical evolution path by the mine water mixing.

  • PDF

Implementation of Radiotherapy Educational Contents Using Virtual Reality (가상현실 기술을 활용한 방사선치료 교육 콘텐츠 제작 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.409-415
    • /
    • 2018
  • The development of smart devices has brought about significant changes in daily life and one of the most significant changes is the virtual reality zone. Virtual reality is a technology that creates the illusion that a 3D high-resolution image has already been created using a display device just like it does in itself. Unrealized subjects are forced to rely on audiovisual materials, resulting in a decline in the concentration of practices and the quality of classes. It used virtual reality to develop effective teaching materials for radiology students. In order to produce a video clip bridge using virtual reality, a radiology clinic was selected to conduct two exposures from July to September 2017. The video was produced taking into account the radiology and work flow chart and filming was carried out in two separate locations : in the computerized tomography unit and in the LINAC room. Prior to filming the scenario and the filming route were checked in advance to facilitate editing of the video. Modeling and mapping was performed in a PC environment using the Window XP operating system. Using two leading virtual reality camera Gopro Hero, CC pixels were produced using a 4K UHD, Adobe, followed by an 8 megapixel resolution of $3,840{\times}2,160/4,096{\times}2,160$. Total regeneration time was performed in about 5 minutes during the production of using virtual reality to prevent vomiting and dizziness. Currently developed virtual reality radiation and educational contents are being used to secure the market and extend the promotion process to be used by various institutions. The researchers will investigate the satisfaction level of radiation and educational contents using virtual reality and carry out supplementary tasks depending on the results.

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period (2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의)

  • Song, Jiae;Lee, Seung-Jae;Kang, Minseok;Moon, Minkyu;Lee, Jung-Hoon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.384-398
    • /
    • 2015
  • In this paper, the high-resolution Weather Research and Forecasting/Noah-MultiParameterization (WRF/Noah-MP) modeling system is configured for the Cheongmicheon Farmland site in Korea (CFK), and its performance in land and atmospheric simulation is evaluated using the observed data at CFK during the 2014 special observation period (21 August-10 September). In order to explore the usefulness of turning on Noah-MP dynamic vegetation in midterm simulations of surface and atmospheric variables, two numerical experiments are conducted without dynamic vegetation and with dynamic vegetation (referred to as CTL and DVG experiments, respectively). The main results are as following. 1) CTL showed a tendency of overestimating daytime net shortwave radiation, thereby surface heat fluxes and Bowen ratio. The CTL experiment showed reasonable magnitudes and timing of air temperature at 2 m and 10 m; especially the small error in simulating minimum air temperature showed high potential for predicting frost and leaf wetness duration. The CTL experiment overestimated 10-m wind and precipitation, but the beginning and ending time of precipitation were well captured. 2) When the dynamic vegetation was turned on, the WRF/Noah-MP system showed more realistic values of leaf area index (LAI), net shortwave radiation, surface heat fluxes, Bowen ratio, air temperature, wind and precipitation. The DVG experiment, where LAI is a prognostic variable, produced larger LAI than CTL, and the larger LAI showed better agreement with the observed. The simulated Bowen ratio got closer to the observed ratio, indicating reasonable surface energy partition. The DVG experiment showed patterns similar to CTL, with differences for maximum air temperature. Both experiments showed faster rising of 10-m air temperature during the morning growth hours, presumably due to the rapid growth of daytime mixed layers in the Yonsei University (YSU) boundary layer scheme. The DVG experiment decreased errors in simulating 10-m wind and precipitation. 3) As horizontal resolution increases, the models did not show practical improvement in simulation performance for surface fluxes, air temperature, wind and precipitation, and required three-dimensional observation for more agricultural land spots as well as consistency in model topography and land cover data.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: II. Effect of Thermodynamic Equations of State on Compression and Transport Process (이산화탄소 해양지중저장 처리를 위한 공정 설계: II. 열역학 상태방정식이 압축 및 수송 공정에 미치는 영향 평가)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.191-198
    • /
    • 2008
  • To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. $CO_2$ capture process from the major point sources such as power plants, transport process from the capture sites to storage sites and storage process to inject $CO_2$ into the deep marine geological structure can be simulate with numerical modeling. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. We also studied the effect of thermodynamic equation of state in designing the compression and transport process. As a results of comparison of numerical calculations, all relevant equation of state excluding ideal equation of state showed similar compression behavior in pure $CO_2$. On the other hand, calculation results of BWRS, PR and PRBM showed totally different behavior in compression and transport process of captured $CO_2$ mixture from the oxy-fuel combustion coal-fired plants. It is recommended to use PR or PRBM in designing of compression and transport process of $CO_2$ mixture containing NO, Ar and $O_2$.

  • PDF

A Study on the Relationship of Learning, Innovation Capability and Innovation Outcome (학습, 혁신역량과 혁신성과 간의 관계에 관한 연구)

  • Kim, Kui-Won
    • Journal of Korea Technology Innovation Society
    • /
    • v.17 no.2
    • /
    • pp.380-420
    • /
    • 2014
  • We increasingly see the importance of employees acquiring enough expert capability or innovation capability to prepare for ever growing uncertainties in their operation domains. However, despite the above circumstances, there have not been an enough number of researches on how operational input components for employees' innovation outcome, innovation activities such as acquisition, exercise and promotion effort of employee's innovation capability, and their resulting innovation outcome interact with each other. This trend is believed to have been resulted because most of the current researches on innovation focus on the units of country, industry and corporate entity levels but not on an individual corporation's innovation input components, innovation outcome and innovation activities themselves. Therefore, this study intends to avoid the currently prevalent study frames and views on innovation and focus more on the strategic policies required for the enhancement of an organization's innovation capabilities by quantitatively analyzing employees' innovation outcomes and their most suggested relevant innovation activities. The research model that this study deploys offers both linear and structural model on the trio of learning, innovation capability and innovation outcome, and then suggests the 4 relevant hypotheses which are quantitatively tested and analyzed as follows: Hypothesis 1] The different levels of innovation capability produce different innovation outcomes (accepted, p-value = 0.000<0.05). Hypothesis 2] The different amounts of learning time produce different innovation capabilities (rejected, p-value = 0.199, 0.220>0.05). Hypothesis 3] The different amounts of learning time produce different innovation outcomes. (accepted, p-value = 0.000<0.05). Hypothesis 4] the innovation capability acts as a significant parameter in the relationship of the amount of learning time and innovation outcome (structural modeling test). This structural model after the t-tests on Hypotheses 1 through 4 proves that irregular on-the-job training and e-learning directly affects the learning time factor while job experience level, employment period and capability level measurement also directly impacts on the innovation capability factor. Also this hypothesis gets further supported by the fact that the patent time absolutely and directly affects the innovation capability factor rather than the learning time factor. Through the 4 hypotheses, this study proposes as measures to maximize an organization's innovation outcome. firstly, frequent irregular on-the-job training that is based on an e-learning system, secondly, efficient innovation management of employment period, job skill levels, etc through active sponsorship and energization community of practice (CoP) as a form of irregular learning, and thirdly a model of Yί=f(e, i, s, t, w)+${\varepsilon}$ as an innovation outcome function that is soundly based on a smart system of capability level measurement. The innovation outcome function is what this study considers the most appropriate and important reference model.

A Study on the Black Box Design using Collective Intelligence Analysis (집단지성 분석법을 활용한 블랙박스 디자인 개발 연구)

  • Lee, Hee young;Hong, Jeong Pyo;Cho, Kwang Soo
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.101-112
    • /
    • 2018
  • This study was carried out to enhance the competitiveness of blackbox design for domestic and international companies, based on the explosive growth of the blackbox market due to development of blackbox design for vehicle accident prevention and post-treatment. In the past, the blackbox market has produced products indiscriminately to meet the ever-increasing demand of consumers. Therefore, we thought a new design method was necessary to effectively investigate the needs of rapidly changing consumers. In this study, we aimed to identify the best-selling blackbox to understand the design flow, and the optimum area for a blackbox, considering the uniqueness of associated vehicle. Based on discussion with blackbox design experts, we studied the direction of design and the problems with blackbox use, which were reflected in blackbox development. Through this research, two types of design - leading blackbox (A type) and mass production blackbox (B type) - were proposed for compatibility of the blackbox with the car. The leading type of blackbox was positioned so that it was wrapped with the room mirror hinge before the screw was fastened, in order to achieve an integrated design. Therefore, we designed an integrated form and resolved the placement problem of an adhesive blackbox. To blend, the mass production blackbox implemented material and surface processing in the same way with the car, and adopted the slide structure to automatically turn off the main body power when removing the SDcard, reflecting consumer needs. This study considers evolving consumer needs through a case study and collective intelligence and deals with implementation of the whole design process during mass production. In this study, we aimed to strengthen the competitiveness of the blackbox design based on design method and its realization.

A Three-Dimensional Modeling Study of Lake Paldang for Spatial and Temporal Distributions of Temperature, Current, Residence Time, and Spreading Pattern of Incoming Flows (팔당호 수온, 유속, 체류시간의 시.공간적 분포 및 유입지류 흐름에 관한 3차원 모델 연구)

  • Na, Eun-Hye;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.978-988
    • /
    • 2005
  • A three-dimensional dynamic model was applied to Lake Paldang, Han River in this study. The model was calibrated and verified using the data measured under different ambient conditions. The model results were in reasonable agreements with the field measurements in both calibration and verification. Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature, current, residence time, and spreading pattern of incoming flows within the lake. Relatively low velocity and high temperature were computed at the surface layer in the southern region of the Sonae island. The longest residence time within the lake was predicted in the southern region of the Sonae island and the downstream region of the South Branch. This can be attributed to the fact that the back currents caused by the dam blocking occur mainly in these regions. Vertical thermal profiles indicated that the thermal stratifications would be occurred feebly in early summer and winter. During early spring and fall, it appeared that there would be no discernible differences at the vertical temperature profiles in the entire lake. The vertical overturns, however, do not occur during these periods due to an influence of high discharge flows from the dam. During midsummer monsoon season with high precipitation, the thermal stratification was disrupted by high incoming flow rates and discharges from the dam and very short residence time was resulted in the entire lake. In this circulation patterns, the plume of the Kyoungan stream with smallest flow rate and higher water temperature tends to travel downstream horizontally along the eastern shore of the south island and vertically at the top surface layer. The model results suggest that the Paldang lake should be a highly hydrodynamic water body with large spatial and temporal variations.

Dispersion of Air Pollutants from Ship Based Sources in Incheon Port (인천항의 선박오염원에서 배출된 대기오염물질의 확산)

  • Kim, Kwang-Ho;Kwon, Byung Hyuk;Kim, Min-Seong;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2017
  • Emissions of pollutants from ship-based sources are controlled by the International Maritime Organization (IMO). Since pollutants emitted from ship may be dispersed to the land, controlling emissions from ships is necessary for efficient air quality management in Incheon, where exposure to ship-based pollution is frequent. It has been noted that the ratios of air pollutant emissions from coastal areas to inland areas are about 14% for NOx and 10% for SOx. The air quality of coastal urban areas is influenced by the number of ships present and the dispersion pattern of the pollutants released depending on the local circulation system. In this study, the dispersion of pollutants from ship-based sources was analyzed using the numerical California Puff Model (CALPUFF) based on a meteorological field established using the Weather Research and Forecasting Model (WRF). Air pollutant dispersion modeling around coastal urban regions such as Incheon should consider point and line sources emitted from both anchored and running ships, respectively. The total average NOx emissions from 82-84 ships were 6.2 g/s and 6.8 g/s, entering and leaving, respectively. The total average SOx emissions from 82-84 ships, entering and leaving, were 3.6 g/s and 5.1 g/s, respectively. The total average emissions for NOx and SOx from anchored ships were 0.77 g/s and 1.93 g/s, respectively. Due to the influence of breezes from over land, the transport of pollutants from Incheon Port to inland areas was suppressed, and the concentration of NOx and SOx inland were temporarily reduced. NOx and SOx were diffused inland by the sea breeze, and the concentration of NOx and SOx gradually increased inland. The concentration of pollutants in the area adjacent to Incheon Port was more influenced by anchored ship in the port than sea breezes. We expect this study to be useful for setting emission standards and devising air quality policies in coastal urban regions.