In this paper, a problem of event-triggered model predictive control is investigated for continuous-time Takagi-Sugeno (T-S) fuzzy systems with input quantization. To efficiently utilize network resources, event-trigger is employed, which transmits limited signals satisfying the condition that the measurement of errors is over the ratio of a certain level. Considering sampling and quantization, continuous Takagi-Sugeno (T-S) fuzzy systems are regarded as a sector bounded continuous-time T-S fuzzy systems with input delay. Then, a model predictive controller (MPC) based on parallel distributed compensation (PDC) is designed to optimally stabilize the closed loop systems. The proposed MPC optimize the objective function over infinite horizon, which can be easily calculated and implemented solving linear matrix inequalities (LMIs) for every event-triggered time. The validity and effectiveness are shown that the event triggered MPC can stabilize well the systems with even smaller average sampling rate and limited actuator signal guaranteeing optimal performances through the numerical example.
International Journal of Control, Automation, and Systems
/
제3권3호
/
pp.502-507
/
2005
The dual-mode strategy has been adopted in many constrained MPC (Model Predictive Control) methods. The size of stabilizable regions of states of MPC methods depends on the size of underlying feasible and positively invariant sets and the number of control moves. The results, however, may perhaps be conservative because the definition of positive invariance does not allow temporal departure of states from the set. In this paper, a concept of periodic invariance is introduced in which states are allowed to leave a set temporarily but return into the set in finite time steps. The periodic invariance can be defined with respect to sets of different state feedback gains. These facts make it possible for the periodically invariant sets to be considerably larger than ordinary invariant sets. The periodic invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC method based on these periodically invariant sets. Some numerical examples are given to show that the use of periodic invariance yields considerably larger stabilizable sets than the case of using ordinary invariance.
Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
Journal of Electrical Engineering and Technology
/
제10권1호
/
pp.165-175
/
2015
Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.
We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.
Among the state-space description of discrete vent systems, the max-plus algebra is known as one of the effective approach. This paper proposes a model predictive control (MPC) design method based on the max-plus algebra. Several studies related to these topics have been done so far under the constraints that system parameters are constant. However, in practical systems such as production systems, it is common and sometimes inevitable that system parameters vary by each event. Therefore, it is of worth to design a new MPC controller taking account of adjustable system parameters. In this paper, we formulate system parameters as adjustable ones, and they are solved by a linear programing method. Since MPC determines optimal control input considering future reference signals, the controller can be more robust and the operation cost can be reduced. Finally, the proposed method is applied to a production system with three machines, and the effectiveness of the proposed method is verified through a numerical simulation.
A new pulse width modulation method based on predictive current control strategy is proposed to modulate matrix converters. The predictive current controller utilizes a discrete-time model to predict the future values of output currents and generates proper duty-ratios ta minimize the output current errors. The proposed method uses continuous carrier and establishes a predictive current controller to predetermine duty ratio signal for directly generating gating signals an thus is named "predictive current control PWM(PCCPWM)". The modulation algorithm nd the required equations are derived by using average concept over one switching period. Thus it can be easily extended to other matrix converter topologies, especially with neutral connections, such as sing le-phase ad two-phase matrix converters. The feasibility and validity of the proposed strategy are verified by computer simulation and experimental results.
An optimization algorithm is developed based on a simulation case of a single family house model equipped with PV arrays. To increase the nationwide use of PV power generation facilities, a market-competitive electricity price needs to be introduced, which is determined based on the time of use. In this study, quadratic programming optimization was applied to minimize the electricity bill while maintaining the indoor temperature within allowable error bounds. For optimization, it is assumed that the weather and electricity demand are predicted. An EnergyPlus-based house model was approximated by using an equivalent RC circuit model for application as a linear constraint to the optimization. Based on the RC model, model predictive control was applied to the management of the cooling load and electricity for the first week of August. The result shows that more than 25% of electricity consumed for cooling can be saved by allowing excursions of temperature error within an affordable range. In addition, profit can be made by reselling electricity to the main grid energy supplier during peak hours.
This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.
폴리올레핀 공정의 melt index(MI or MFI)는 제품의 품질을 결정짓는 가장 중요한 제어변수이다. MI는 실시간으로 측정하는 것이 어렵기 때문에 MI를 예측하여 상관관계를 나타내고자 하는 많은 방법들이 제안되었다. 본 연구에서는 시스템 인식기법을 바탕으로 MI 예측을 위한 새로운 1차의 동적 예측모델을 고안하였다. 이 모델의 예측성능은 등급변경이 수반되는 고밀도 폴리에틸렌 공장의 실제 운전데이터에 근거한 모사로 검증하였으며 다른 예측방법들과의 비교로부터 본 연구에 의한 예측모델의 우수성을 확인하였다. 구성된 MI 동적 예측모델을 토대로 하는 모델예측제어방법의 적용을 통하여 각 단위공정별 MI를 계산하고 운전데이터와 비교하였다. 제어운전의 모사를 통하여 등급변경이 이루어지는 운전 동안의 전이시간과 불량제품 발생량이 현저한 감소를 보임을 확인하였다.
An adaptive predictive control method for SISO and MIMO plants is proposed. In this method, future predictions of process output based on a bilinear CARIMA model are used to calculate the control input. Also, a classical recursive adaptation algorithm, equation error method, is used to decrease the uncertainty of the process model. As a result of the application on distillation process, the ability of the set-point tracking and the disturbance rejection is acceptable to apply to the industrial distillation processes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.