• Title/Summary/Keyword: model-based estimator

Search Result 463, Processing Time 0.027 seconds

The Design of Sliding Model Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • To improve control performance of a non-linear system, many other reserches have used the sliding model control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However, this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network. The perturbation estimator based on the fuzzy adaptive network generates the control input of compensating unmodeled dynamics terms and disturbance. And the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluation control performance of the proposed approach, tracking control simulation is carried is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

A Robust Estimator in Multivariate Regression Using Least Quartile Difference

  • Jung Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • We propose an equivariant and robust estimator in multivariate regression model based on the least quartile difference (LQD) estimator in univariate regression. We call this estimator as the multivariate least quartile difference (MLQD) estimator. The MLQD estimator considers correlations among response variables and it can be shown that the proposed estimator has the appropriate equivariance properties defined in multivariate regressions. The MLQD estimator has high breakdown point as does the univariate LQD estimator. We develop an algorithm for MLQD estimate. Simulations are performed to compare the efficiencies of MLQD estimate with coordinatewise LQD estimate and the multivariate least trimmed squares estimate.

A Wald Test for a Unit Root Based on the Symmetric Estimator

  • Jong Hyup Lee;Dong Wan SHin
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.677-683
    • /
    • 1997
  • For an AR(1) model with intercept $y_t=\mu+\rho{y_{t-1}}+e_t$, a test for random walk hypothesis $H_0:(\mu, \rho)=(0, 1)$is proposed, which is based on the symmetric estimator. In the vicinity of the null, the test in shown to be more powerful than the test of Dickey and Fuller(1981) based on the ordinary least squares estimator.

  • PDF

ADAPTIVE CHANDRASEKHAR FILLTER FOR LINEAR DISCRETE-TIME STATIONALY STOCHASTIC SYSTEMS

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1041-1044
    • /
    • 1988
  • This paper considers the design problem of adaptive filters based an the state-space models for linear discrete-time stationary stochastic signal processes. The adaptive state estimator consists of both the predictor and the sequential prediction error estimator. The discrete Chandrasakhar filter developed by author is employed as the predictor and the nonlinear least-squares estimator is used as the sequential prediction error estimator. Two models are presented for calculating the parameter sensitivity functions in the adaptive filter. One is the exact model called the linear innovations model and the other is the simplified model obtained by neglecting the sensitivities of the Chandrasekhar X and Y functions with respect to the unknown parameters in the exact model.

  • PDF

Eliminating Method of Estimated Magnetic Flux Offset in Flux based Sensorless Control Algorithm of Surface Mounted PM Synchronous Motor (표면부착형 영구자석 동기전동기의 자속기반 센서리스 제어 알고리즘의 추정자속 옵셋 제거 기법)

  • Kim, Hack-Jun;Cho, Kwan-Yuhl;Kim, Hag-Wone;Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • The rotor position of a PM synchronous motor is commonly estimated from the mathematical model for the sensorless control without rotor position sensors. For the magnet flux-based rotor position estimator in the stationary reference frame, the magnet flux estimator for estimating rotor position and speed includes the integrator. The integrator in the magnet flux estimator may accumulate the offset of the current sensors and the voltage drift. This continuous accumulation of the offset may cause the drift and overflow in the integrator, such that the estimated rotor position and speed may fail to track the real rotor position and speed. In this paper, the magnet flux estimator without integrator is proposed to avoid overflow in the integrator. The proposed rotor position and speed estimator based on magnet flux estimator are verified through simulation and experiment.

A Study on the Upright Control of an Inverted Triangle (역삼각형의 직립 제어에 관한 연구)

  • 오영석;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.571-578
    • /
    • 1997
  • This paper presents a method for designing a control system to stand upright inverted triangle. A linearized model is obtained form the nonlinear system by Taylor series expansion and a state controller is designed based on the model. After implementing the control system which is combined control law and estimator with reference input, experiments are carried out to stand upright inverted triangle at any angluar position.

  • PDF

A Study on a One-step Pairwise GM-estimator in Linear Models

  • Song, Moon-Sup;Kim, Jin-Ho
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.1-22
    • /
    • 1997
  • In the linear regression model $y_{i}$ = .alpha. $x_{i}$ $^{T}$ .beta. + .epsilon.$_{i}$ , i = 1,2,...,n, the weighted pairwise absolute deviation (WPAD) estimator was defined by minimizing the dispersion function D (.beta.) = .sum..sum.$_{{i $w_{{ij}}$$\mid$ $r_{j}$ (.beta.) $r_{i}$ (.beta.)$\mid$, where $r_{i}$ (.beta.)'s are residuals and $w_{{ij}}$'s are weights. This estimator can achive bounded total influence with positive breakdown by choice of weights $w_{{ij}}$. In this paper, we consider a more general type of dispersion function than that of D(.beta.) and propose a pairwise GM-estimator based on the dispersion function. Under some regularity conditions, the proposed estimator has a bounded influence function, a high breakdown point, and asymptotically a normal distribution. Results of a small-sample Monte Carlo study are also presented. presented.

  • PDF

An Efficient Global Motion Estimation based on Robust Estimator

  • Joo, Jae-Hwan;Choe, Yoon-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.408-412
    • /
    • 2009
  • In this paper, a new efficient algorithm for global motion estimation is proposed. This algorithm uses a previous 4-parameter model based global motion estimation algorithm and M-estimator for improving the accuracy and robustness of the estimate. The first algorithm uses the block based motion vector fields and which generates a coarse global motion parameters. And second algorithm is M-estimator technique for getting precise global motion parameters. This technique does not increase the computational complexity significantly, while providing good results in terms of estimation accuracy. In this work, an initial estimation for the global motion parameters is obtained using simple 4-parameter global motion estimation approach. The parameters are then refined using M-estimator technique. This combined algorithm shows significant reduction in mean compensation error and shows performance improvement over simple 4-parameter global motion estimation approach.

  • PDF

Comparison of Small Area Estimations by Sample Sizes

  • Kim, Jung-O;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.669-683
    • /
    • 2006
  • Model-based methods are generally used for small area estimation. Recently Shin and Lee (2003) suggested a method which used spatial correlations between areas for data set including some auxiliary variables. However in case of absence of auxiliary variables, Direct estimator is used. Even though direct estimator is unbiased, the large variance of the estimator restricts the use for small area estimation. In this paper, we suggest new estimators which take into account spatial correlation when auxiliary variables are not available. We compared Direct estimator and the newly suggested estimators using MSE, MAE and MB.

Estimation of a Mass Unbalance Under the Crack on the Rotating Shaft

  • Park, Rai-Wung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.228-234
    • /
    • 2000
  • The aim of the work is to present a new method of estimating the existence of a mass unbalance and mass unbalance under a crack on a rotating shaft. This is an advanced new method for the detection of a mass unbalance and a new way to estimate the position of it under crack influence. As the first step, the shaft is physically modelled with a finite element method and the dynamic mathematical model is derived by using the Hamilton principle; thus, the system is represented by various subsystems. The equation of motion of the shaft with a mass unbalance and a crack are established by adapting the local mass unbalance and the stiffness change. this is a reference system for the given system. Based on a model for transient behavior induced from vabrations measured at the bearings, an elementary Estimator is designed to detect mass unblance on the shaft. Using the Estimator, a bank of the Estimator is established to estimate the estimate the position of the mass unbalance and arranged at a certain location on the shaft. The informations for the given system are the measurements of bearing displacements and velocity.

  • PDF