The Korean Communications
in Statistics Vol. 4, No. 3, 1997
pp- 677 - 683

A Wald Test for a Unit Root Based on
the Symmetric Estimator

Jong Hyup Leel) and Dong Wan Shin2)

Abstract

For an AR(1) model with intercept y,=u+py..1+e, a test for random walk
hypothesis Hy: (#, ©) =(0,1) is proposed, which is based on the symmetric estimator.

In the vicinity of the null, the test is shown to be more powerful than the test of
Dickey and Fuller(1981) based on the ordinary least squares estimator.

1. Introduction

Since the seminal work of Dickey and Fuller(1979), testing for a unit root attracted much
attention both from statisticians and economists. Nelson and Plosser(1982) and many others
showed that many macro economic variables such as GNP, employment, consumer prices,
wages and others are shown to be better modeled by a nonstationary unit root autoregression
than a deterministic trend with stationary error.

Owning to the wide applicability of unit root test procedures, a broad class of literature is
growing up in various aspects of the statistical method. One direction is to widen the
applicability of unit root tests. Many authors developed test procedures which work for
autoregessive moving average errors and mixing errors. Also various multivariate extensions
were made in connection with cointegration.

Anocther direction is to improve powers of tests for unit roots. Among those are the works:
the symmetric test and the weighted symmetric test (Park and Fuller, 1995), the unconditional
test (Gonzalez-Farias, 1992), the invariant test (Elliott et al, 1996). Pantula et al(1994)
conducted a Monte-Carlo comparison of those tests including also the classical conditional
tests of Dickey and Fuller(1979). They concluded that the weighted symmetric test has the
best power. Shin and So(1997) developed symmetric semiparametric tests and showed that the
symmetric tests have better power performance than the semiparametric tests of Phillips(1987)
and Phillips and Perron(1988).
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All the above procedures test for one parameter, the unit root. Usually the main object of
unit root analysis is to show that the economic series under study is a random walk. In
autoregressive fittings, in addition to the lags of observations, an intercept term is usually
included. Then the hypothesis of random walk is the joint hypothesis of unit root and zero
intercept, for which we have the likelihood ratio tests of Dickey and Fuller(1981) based on the
ordinary least squares estimator and the Wald tests based on the instrument variable
estimator (Hall, 1992). We now observe that the tests for the joint hypothesis can also be
improved by considering the better symmetric estimator. Our test is more powerful than the
likelihood ratio test of Dickey and Fuller(1981) for the parameter close to null and can be used
as a supplementary test to the test of Dickey and Fuller(1981).

In Section 2, we develop a test for the joint hypothesis which is based on the symmetric
estimator and the Wald principle. In Section 3, a Monte-Carlo experiment is conducted to
study finite sample performance of the proposed test. In Section 4, a concluding remark is
given,

2. Wald test statistics

Consider a time series model

vi=ptey,ite, t=2,..,mn, 2.1)

where {y,} 7., is a set of observations and e, is an independent normal N(O,oz) error

sequence. Since mean adjusted fitting is the most widely used for testing unit root purpose,
we consider model (2.1) with an intercept.

Of great interest in the economic and statistic literature is to determine whether y,1s a
random walk or not. When the true value of (g, ) is (0,1), the true behavior of ¥y, is a

random walk. Various tests for po=1 were developed by numerous people such as Dickey
and Fuller(1979), Phillips(1987), Phillips and Perron(1988), to name a few. Also tests for
combined hypothesis (x,0) = (0,1) were developed by Dickey and Fuller(1981) using the
likelihood ratio principle. All the above tests are essentially based on the conditional ordinary
least squares estimator

o= tzjz(yr YY1 — ¥ ()l Ziz(yt_l— yep)? and p=ygH— 0y y, (22
where vy y3=(n—1) ! g:zy t+¢ for i=—1,0.

Shin and So(1997) and Park and Fuller(1995) noticed that the AR(1) process
y:=pu+py,1+e, has a forward regression representation
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yw=ptoy,1te, t=2,..,n (2.3)
and also a backward regression representation
Ve1=ptoyt+b, t=2,..,n (2.4

for some error sequence b, Under the null (u,0)=(0,1), b,=—e,. In estimating p, if we

combine both the regression equations (2.3) and (2.4), we get a better estimator of o which
has less variation than the ordinary least squares estimator when o is close to one. This fact
gives improved power for the unit root tests based on the symmetric estimator. See Shin and
So0(1997), Park and Fuller(1995) and Pantula, Gonzalez-Farias and Fuller(1994).

We now consider symmetric estimation in constructing a test for the joint hypothesis
Hy(p,0)=(0,1). Let 8=1(g, p)  be a vector of the parameters. Combining (2.3) and (2.4),

we get a regression model

Y= X6+ U, (2.5)
where  Y=(3g 991, s ¥ uet) » X={(1,,1) (31, . ¥ o132, -, ¥0) ), and
U=(ey, .-, en, by, -, by) .
Our symmetric estimator of 6 is
P=(X'X) (XD, (2.6)
which is simplified as
D HCPRE CRRY N CTRELED HERDR @7
and
n=(1-70), (2.8)

where ;=(2n—2)“1§2(yt+y,-1)=(_3_)(0)+ ¥ (_p)/2. Observe that, if p=1, then

2=(1— p)y=0 and % estimates O regardless of the true value of u. Also note that the
term in the first bracket of

2={ye— 0 ynt— 27U+ 2)y,—y)/(n—1)} (2.9)
consistently estimates #. However, the term in the latter bracket of (2.9) induces a bias when

4 is not zero and p is close to one. Therefore, instead of /[1, we use a bias—adjusted
estimator

=2+ 2 710+ 2)(y—y)/(n—1D}. (2.10)
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Now, our test for (u#,0) = (0,1) is based on @=( z, p) . The Wald principle gives us
the statistic

D,=(8-00) (X X(0-0p/2 ), 2.11)

where 6,=(0,1) " is the vector of the parameters under H, and

o= gz(yt— 2= 0y, (n—3) (2.12)

is an estimator of ¢ based on the ordinary least squares estimator. Limiting distribution of
the test statistic is given in the following Theorem 1.

Theorem 1. Assume g=( and e=1. Then the limiting distribution of /@S is 77'Hr,
where

7=2 " NG-V) W+ T -2 G- Y},
H=[ %, (‘;’] G= folvv?(r)dr, T=W1), V= fOIW(r)a’r,

and W7) is a standard Brownian motion on [0,1].

Proof. By the invariance principle(Billingsley, 1968, Theorem 16.1), n Y2y [nr] L*O'W( 7),

where L’ denotes convergence in distribution. Hence, by the continuous mapping theorem
(Billingsley, 1968, Theorem 5.1),

(n 2y, 023y, 02390 (6T 6V, 2C). (2.13)
Also

n(p=D==ZeHl Zv1- 3+ Ko L -2 M6-1H 1 @

and
n 2 ha=(1- )9+ 2 U+ D=3/ (n=1} L 2°Y(CG— 1) Vot To. (215)

Therefore,  jointly, D, 'XXxXDbD,! 4, 2H and D,(9-6,) 4, 07,  where

D, = diag (%, n0) and the result follows.

The limiting distribution in Theorem 1 is different from that of Dickey and Fuller(1981,
p.1061). Therefore, we need a table of percentiles of the null distribution of the test statistic.
Empirical distribution of the statistic is created for samples generated by a model with y,=0(
and y,=y, ,+e, t=1,2,..,n n=25 50, 100, 250, 500. As in Dickey and Fuller(1981), three
replicates of 50,000 samples were generated for #=25, two for 7=1>50,100, and 250, and one
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for #n=0500. For each sample size, the 0.01, 0.025 0.05, 0.10, 0.90, 0.95, 0975 and 099
percentage points of the empirical distribution is provided in Table 1 below.

Table 1. Percentiles of the null distribution of @, for (u,0)=(0,1) in y,=u+py, 1 +e,.

Sample Probability of a smaller value

size n 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
25 1.10 1.28 1.48 1.76 6.57 8.21 10.04 12.63
50 1.11 1.30 1.50 1.78 6.29 7.78 9.30 11.46
100 1.09 1.30 1.51 1.79 6.17 7.53 8.94 10.93
250 1.10 1.30 1.52 1.80 6.09 7.45 8.81 10.70
500 1.09 1.31 1.53 1.81 6.09 7.44 8.77 10.65

3. A Monte—-Carlo study

In this section, we compare finite sample properties of our symmetric test with the test of
Dickey and Fuller(1981) given by D,=(6-6y ( X, X)6—6y/(2 712), where
Bb=(X,X) 'X, Y, is the ordinary least squares estimator, X,= {(1, --,1) ',
(31, s ¥ n1) }, and Y,=(3y, -, ¥, . For our study, we consider an AR(l) process
yvi=p+py,.,+e, where e, are independent identically distributed standard normal errors.
We consider the parameter configuration: #=25, 50, 100, 250, 500; »=1,0.99,0.95,0.90,0.80.
The observations ¥, are simulated using the standard pseudo normal error e, gennerated by
RNNOA in IMSL.

In order to eliminate the start-up effect, v, t=—19,—18, ...,n are generated and only ¥,
t=1,...,n are used in computing the test statistics. We fit the mean-adjusted model (2.4)
and compute the symmetric test statistic @s.

In Table 2, we report percentages of rejected test statistics for the null hypothesis
(u,0)=1(0,1) among 10,000 (or 3,000) number of independent samples. The nominal level is

set to 5%.
One interesting result is that the symmetric test is more powerful than the likelihood ratio

test for o close to 1 or u close to zero. For the parameter combinations of o equal one or
£ equal zero, the symmetric test has better power. On the other hand, for g not close to

zero and p not close to one, our test lose power severely. A practical implication is discussed
in the following section.
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Table 2. Empirical powers of @, and @, for nominal level 0.05.

e=0.8 0=0.9 »=0.95 0=0.99 e=1.0
u M 2 14 o

n  Statistic 000 050 1.00 0.00 050 1.00 000 050 1.00 0.00 050 1.00 0.00 050 100

25 2, 0.07 0.10 0.16 005 008 024 004 010 055 0.04 026 091 005 033 096
[/ 0.14 012 0.08 008 0.05 0.06 0.06 005 051 005 027 095 0.05 039 097

50 o, 024 029 037 008 012 038 005 014 071 0.04 028 048 005 071 1.00
o, 044 041 029 0.17 008 0.02 0.09 002 0.38 005 052 1.00 005 078 1.00

100 2, 0.79 082 0.88 023 033 0.67 0.08 022 086 005 0.77 1.00 0.05 098 1.00
9, 095 094 092 045 032 012 0.17 003 0.03 006 0.76 1.00 005 099 1.00

250 2, 1.00 1.00 1.00 093 097 1.00 035 060 0.99 005 09 1.00 0.05 100 1.00
?, 1.00 1.00 1.00 099 099 097 062 033 0.05 009 070 1.00 005 100 1.00

500 o, 1.00 1.00 1.00 100 1.00 1.00 092 098 100 0.08 098 1.00 0.05 100 1.00
(] © 100 100 1.00 100 1.00 1.00 099 098 0.87 018 0.12 1.00 005 100 1.00

For u#=0 power is computed from 10,000 samples.
For u#+(0 power is computed from 3,000 samples.

4. Conclusion

In the Monte-Carlo simulation, our symmetric test is shown to be more powerful than the
likelihood ratio test in the vicinity of the null hypothesis. This is an encouraging result
because difficulty in hypothesis testing lies for the parameter close to the null. We can use
the symmetric test as a supplementary tool to the likelihood ratio test. When the likelihood
ratio test does not reject the null hypothesis, one may see also the symmetric test. If the
symmetric test also does not reject the random walk hypothesis, we can say more confidently
that the series is a random walk.

When the likelihood ratio test does not reject the random walk hypothesis, owning to the
relative lower power of the likelihood ratio test in the vicinity of the null, there is still
possibility that the series under study is not a random walk. In that case, our test can be
used as a cross check. If our test also does not reject the null hypothesis, we get more
confidence for the random walk hypothesis than what the likelihood ratio test gives us.
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