• Title/Summary/Keyword: model-based controller

Search Result 1,934, Processing Time 0.034 seconds

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo;Liu, Junwei;Dong, Fengbin;Mu, Anle
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.168-180
    • /
    • 2018
  • In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.

Target Speech Detection Using Gaussian Mixture Model of Frequency Bandwise Power Ratio for GSC-Based Beamforming (GSC 기반 빔포밍을 위한 주파수 밴드별 전력비 분포의 혼합 가우시안 모델을 이용한 목표 음성신호의 검출)

  • Chang, Hyungwook;Kim, Youngil;Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • Noise reduction is necessary to compensate for the degradation of recognition performance by various types of noises. Among many noise reduction techniques using microphone array, generalized sidelobe canceller (GSC) has been widely applied to reduce nonstationary noises. The performance of GSC is directly affected by its adaptation mode controller (AMC). That is, accurate target speech detection is essential to guarantee the sufficient noise reduction in pure noise intervals and the less distortion in target speech intervals. Thus, this paper proposes an improved AMC design technique in which the power ratio of the output of fixed beamforming to that of blocking matrix is calculated frequency bandwise and probabilistically modeled by mixture Gaussians for each class. Experimental results show that the proposed algorithm outperforms conventional AMCs in receiver operating curves (ROC) and output SNRs.

Dynamic Models of Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기를 이용한 블레이드 피치 조종 시스템의 동역학 모델)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.111-118
    • /
    • 2022
  • An electro-mechanical actuator (EMA) is an actuator that combines an electric motor with a mechanical power transmission elements, and it is suitable for urban air mobility (UAM) in terms of design freedom and maintenance. In this paper, the author presents the research results of the EMA that controls the rotor blade pitch angle of UAM. The actuator is based on an inverted roller screw and controls the blade pitch angle through a two-bar linkage. The dynamic equations for the actuator alone and the blade pitching motion with actuator were derived. For the latter, the equivalent moment of inertia is variable depending on the link angle due to the two-bar linkage. The variations of the equivalent moments of inertia are analyzed and compared in terms of the nut motion and the blade pitch motion. For an example model, the variation of the equivalent moment of inertia of the former is smaller than the latter, so it is judged that the dynamic equations derived from the point of view of the nut motion is suitable for the controller design.

Reconfigurable Simulator for Safety Evaluation of eVTOL Aircraft (eVTOL 항공기 안전성 평가를 위한 가변형 시뮬레이터 구축)

  • Hyeji Kim;Jeongmin Kim;Dayeon Yoon;Jongjun Ha;Dongjin Lee;Jangho Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.95-101
    • /
    • 2024
  • This paper aims to establish a reconfigurable flight simulation environment to conduct safety evaluation of various electric vertical take-off and landing (eVTOL) aircraft. Since the inceptor, aircraft dynamics model, and controller applied to each eVTOL aircraft are different, it was configured to be variable so that a simulation can be executed for each eVTOL aircraft. Test elements and performance indicators were set to perform safety evaluation of eVTOL aircraft. Ground auxiliary equipments were designed and implemented in a simulation environment according to test procedures for each test element. In addition, to analyze safety performance, a simulation flight data collection environment based on MATLAB/Simulink and a tool for safety performance analysis were implemented. Test flight and analysis were conducted in the implemented simulation environment in this paper. Finally, this study shows the environment was verified by confirming that it was performed normally.

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.

High Gain Observer-based Robust Tracking Control of LIM for High Performance Automatic Picking System (고성능 자동피킹 시스템을 위한 선형 유도 모터의 고이득 관측기 기반의 강인 추종 제어)

  • Choi, Jung-Hyun;Kim, Jung-Su;Kim, Sanghoon;Yoo, Dong Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • To implement an automatic picking system (APS) in distribution center with high precision and high dynamics, this paper presents a high gain observer-based robust speed controller design for a linear induction motor (LIM) drive. The force disturbance as well as the mechanical parameter variations such as the mass and friction coefficient gives a direct influence on the speed control performance of APS. To guarantee a robust control performance, the system uncertainty caused by the force disturbance and mechanical parameter variations is estimated through a high gain disturbance observer and compensated by a feedforward manner. While a time-varying disturbance due to the mass variation can not be effectively compensated by using the conventional disturbance observer, the proposed scheme shows a robust performance in the presence of such uncertainty. A Simulink library has been developed for the LIM model from the state equation. Through comparative simulations based on Matlab - Simulink, it is proved that the proposed scheme has a robust control nature and is most suitable for APS.

Joint Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (스테레오스코픽 3차원 지상파 방송을 위한 합동 비트율 제어 연구)

  • Chang, Yongjun;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.14-17
    • /
    • 2010
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies prepare for starting stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast attains due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting system with heterogeneous video coding systems is considered for terrestrial 3DTV broadcast where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of two bit streams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter computed from the proposed optimization scheme. Besides, we also consider a condition on quality difference between the left and right images in the optimization. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm in terms of minimizing the mean image distortion as well as the mean value and the variation of absolute image quality differences.

  • PDF

Development of Small-sized Model of Ray-type Underwater Glider and Performance Test (Ray형 수중글라이더 소형 축소모델 개발 및 성능시험)

  • Choi, Hyeung-sik;Lee, Sung-wook;Kang, Hyeon-seok;Duc, Nguyen Ngoc;Kim, Seo-kang;Jeong, Seong-hoon;Chu, Peter C.;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.537-543
    • /
    • 2017
  • Underwater glider is the long-term operating underwater robot that was developed with a purpose of continuous oceanographic observations and explorations. Torpedo-type underwater glider is not efficient from an aspect of maneuverability, because it uses a single buoyancy engine and motion controller for obtaining propulsive forces and moments. This paper introduces a ray-type underwater glider(RUG) with dual buoyancy engine, which improves the control performance of buoyancy and motion compared with torpedo-type underwater glider. Carrying out Computational Fluid Dynamics (CFD) analysis as static pitch drift test, the performance of fluid resistance for gliding motion was identified. Based on the calculated hydrodynamic coefficients, the dynamic simulation compared and analyzed the motion performance of torpedo-type and ray-type while controlling same volume of buoyancy engine. Small-sized model of RUG was developed to perform fundamental performance tests.

OVERVIEW OF KSTAR INTEGRATED CONTROL SYSTEM

  • Park, Mi-Kyung;Kim, Kuk-Hee;Lee, Tae-Gu;Kim, Myung-Kyu;Hong, Jae-Sic;Baek, Sul-Hee;Lee, Sang-Il;Park, Jin-Seop;Chu, Yong;Kim, Young-Ok;Hahn, Sang-Hee;Oh, Yeong-Kook;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.451-458
    • /
    • 2008
  • After more than 10 years construction, KSTAR (Korea Superconducting Tokamak Advanced Research) had finally completed its assembly in June 2007, and then achieved the goal of first-plasma in July 2008 through the four month's commissioning. KSTAR was constructed with fully superconducting magnets with material of $Nb_3Sn$ and NbTi, and their operation temperatures are maintained below 4.5K by the help of Helium Refrigerator System. During the first-plasma operation, plasmas of maximum current of 133kA and maximum pulse width of 865ms were obtained. The KSTAR Integrated Control System (KICS) has successfully fulfilled its missions of surveillance, device operation, machine protection interlock, and data acquisition and management. These and more were all KSTAR commissioning requirements. For reliable and safe operation of KSTAR, 17 local control systems were developed. Those systems must be integrated into the logically single control system, and operate regardless of their platforms and location installed. In order to meet these requirements, KICS was developed as a network-based distributed system and adopted a new framework, named as EPICS (Experimental Physics and Industrial Control System). Also, KICS has some features in KSTAR operation. It performs not only 24 hour continuous plant operation, but the shot-based real-time feedback control by exchanging the initiatives of operation between a central controller and a plasma control system in accordance with the operation sequence. For the diagnosis and analysis of plasma, 11 types of diagnostic system were implemented in KSTAR, and the acquired data from them were archived using MDSpius (Model Driven System), which is widely used in data management of fusion control systems. This paper will cover the design and implementation of the KSTAR integrated control system and the data management and visualization systems. Commissioning results will be introduced in brief.