DOI QR코드

DOI QR Code

Development of Small-sized Model of Ray-type Underwater Glider and Performance Test

Ray형 수중글라이더 소형 축소모델 개발 및 성능시험

  • Choi, Hyeung-sik (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Lee, Sung-wook (Department of Naval Architecture and Ocean Systems Engineering, Korea Maritime and Ocean University) ;
  • Kang, Hyeon-seok (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Duc, Nguyen Ngoc (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Kim, Seo-kang (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Jeong, Seong-hoon (Research Institute of Industrial Technology, Korea Maritime and Ocean University) ;
  • Chu, Peter C. (Department of Oceanography, Naval Postgraduate School) ;
  • Kim, Joon-young (Department of Mechanical Engineering, Korea Maritime and Ocean University)
  • 최형식 (한국해양대학교 기계공학부) ;
  • 이성욱 (한국해양대학교 조선해양시스템공학부) ;
  • 강현석 (한국해양대학교 기계공학부) ;
  • ;
  • 김서강 (한국해양대학교 기계공학부) ;
  • 정성훈 (한국해양대학교 산업기술연구소) ;
  • ;
  • 김준영 (한국해양대학교 기계공학부)
  • Received : 2017.12.04
  • Accepted : 2017.12.18
  • Published : 2017.12.31

Abstract

Underwater glider is the long-term operating underwater robot that was developed with a purpose of continuous oceanographic observations and explorations. Torpedo-type underwater glider is not efficient from an aspect of maneuverability, because it uses a single buoyancy engine and motion controller for obtaining propulsive forces and moments. This paper introduces a ray-type underwater glider(RUG) with dual buoyancy engine, which improves the control performance of buoyancy and motion compared with torpedo-type underwater glider. Carrying out Computational Fluid Dynamics (CFD) analysis as static pitch drift test, the performance of fluid resistance for gliding motion was identified. Based on the calculated hydrodynamic coefficients, the dynamic simulation compared and analyzed the motion performance of torpedo-type and ray-type while controlling same volume of buoyancy engine. Small-sized model of RUG was developed to perform fundamental performance tests.

수중글라이더(UG; underwater glider)는 지속적인 해양관측 탐사를 목적으로 개발된 장기운용 가능한 수중로봇이다. 원통형의 일반적인 수중글라이더는 단일 부력엔진과 자세제어기를 통해 추진하기 때문에, 운동조종성능 측면에서 효율적이지 못하다. 본 논문에서는 기존 원통형 수중글라이더의 부력제어 및 운동제어성능을 개선하기 위해 이중부력엔진을 탑재한 가오리 형태의 수중글라이더를 소개한다. CFD(computational fluid dynamics) 해석을 수행하여 설계된 형상의 글라이드 운동에 대한 유체저항성능을 해석한다. 산출한 유체력 계수를 바탕으로 운동 시뮬레이션을 수행하여 운동성능을 비교 분석한다. 가오리 형태의 수중글라이더 소형 축소모델을 제작하고, 제어시스템을 구성하여 기초 성능시험을 수행한다.

Keywords

References

  1. D. C. Webb, P. J. Simonetti and C. P. Jones, "SLOCUM, An underwater glider propelled by environmental energy", IEEE Journal of Oceanic Engineering, Vol.26, No.4, pp.447-452, 2001. https://doi.org/10.1109/48.972077
  2. C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard and A. M. Chiodi, "Seaglider: A long range autonomous underwater vehicle for oceanographic research", IEEE Journal of Oceanic Engineering, Vol.26, No.4, pp.424-436, 2001. https://doi.org/10.1109/48.972073
  3. J. Sherman, R. E. Davis, W. B. Owens and J. Valdes, "The Autonomous Underwater Glider 'Spray'", IEEE Journal of Oceanic Engineering, Vol.26, No.4, pp.437-446, 2001. https://doi.org/10.1109/48.972076
  4. S. L. Wood and C. E. Mierzwa, "State of technology in autonomous underwater gliders", The Marine Technology Society Journal, Vol.47, No.5, pp.84-96, 2013. https://doi.org/10.4031/MTSJ.47.5.4
  5. Y. S. Park, S. J. Lee, Y. K. Lee, S. K. Jung, N. D. Jang and H. W. Lee, "Report of east sea crossing by underwater glider", Journal of the Korean Society of Oceanography, Vol.17, No.2, pp.130-137, May 2012.
  6. D. H. Ji, H. S. Choi, J. Y. Kim, D. W. Jung and S. H. Jeong, "A design control system of hybrid underwater glider and performance test", Journal of Advanced Navigation Technology, Vol.21, No.1, pp.21-29, 2017. https://doi.org/10.12673/jant.2017.21.1.21
  7. K. S. Nam, J. H. Bae, S. K. Jeong, S. J. Lee and J. Y. Kim, "Dynamics modeling and performance analysis for the underwater glider", Journal of the Korean Society of Marine Engineering, Vol.39, No.7, pp.709-715, 2015. https://doi.org/10.5916/jkosme.2015.39.7.709
  8. D. H. Kim, S. S. Lee, H. S. Choi, J. Y. Kim, S. J. Lee and Y. K. Lee, "Dynamic modeling and motion analysis of unmanned underwater gliders with mass shifter unit and buoyancy engine", Journal of Ocean Engineering and Technology, Vol.28, No.5, pp.466-473, Oct. 2014. https://doi.org/10.5574/KSOE.2014.28.5.466
  9. S. W. Lee, J. H. Jeong, S. K. Jeong, H. S. Choi and J. Y. Kim, "Hull design and dynamic performance analysis for ray-type underwater glider", Journal of Embedded Systems and Applications, Vol.12, No.5, pp.343-350, Oct. 2017.

Cited by

  1. A numerical study on hydrodynamic maneuvering derivatives for heave-pitch coupling motion of a ray-type underwater glider vol.12, pp.None, 2017, https://doi.org/10.1016/j.ijnaoe.2020.10.002