• Title/Summary/Keyword: model systems

Search Result 23,824, Processing Time 0.054 seconds

Application Plan of Goods Information in the Public Procurement Service for Enhancing U-City Plans (U-City계획 고도화를 위한 조달청 물품정보 활용 방안 : CCTV 사례를 중심으로)

  • PARK, Jun-Ho;PARK, Jeong-Woo;NAM, Kwang-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.21-34
    • /
    • 2015
  • In this study, a reference model is constructed that provides architects or designers with sufficient information on the intelligent service facility that is essential for U-City space configuration, and for the support of enhanced design, as well as for planning activities. At the core of the reference model is comprehensive information about the intelligent service facility that plans the content of services, and the latest related information that is regularly updated. A plan is presented to take advantage of the database of list information systems in the Public Procurement Service that handles intelligent service facilities. We suggest a number of improvements by analyzing the current status of, and issues with, the goods information in the Public Procurement Service, and by conducting a simulation for the proper placement of CCTV. As the design of U-City plan has evolved from IT technology-based to smart space-based, reviews of limitations such as the lack of standards, information about the installation, and the placement of the intelligent service facility that provides U-service have been carried out. Due to the absence of relevant legislation and guidelines, however, planning activities, such as the appropriate placement of the intelligent service facility are difficult when considering efficient service provision. In addition, with the lack of information about IT technology and intelligent service facilities that can be provided to U-City planners and designers, there are a number of difficulties when establishing an optimal plan with respect to service level and budget. To solve these problems, this study presents a plan in conjunction with the goods information from the Public Procurement Service. The Public Procurement Service has already built an industry-related database of around 260,000 cases, which has been continually updated. It can be a very useful source of information about the intelligent service facility, the ever-changing U-City industry's core, and the relevant technologies. However, since providing this information is insufficient in the application process and, due to the constraints in the information disclosure process, there have been some issues in its application. Therefore, this study, by presenting an improvement plan for the linkage and application of the goods information in the Public Procurement Service, has significance for the provision of the basic framework for future U-City enhancement plans, and multi-departments' common utilization of the goods information in the Public Procurement Service.

Story-based Information Retrieval (스토리 기반의 정보 검색 연구)

  • You, Eun-Soon;Park, Seung-Bo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.81-96
    • /
    • 2013
  • Video information retrieval has become a very important issue because of the explosive increase in video data from Web content development. Meanwhile, content-based video analysis using visual features has been the main source for video information retrieval and browsing. Content in video can be represented with content-based analysis techniques, which can extract various features from audio-visual data such as frames, shots, colors, texture, or shape. Moreover, similarity between videos can be measured through content-based analysis. However, a movie that is one of typical types of video data is organized by story as well as audio-visual data. This causes a semantic gap between significant information recognized by people and information resulting from content-based analysis, when content-based video analysis using only audio-visual data of low level is applied to information retrieval of movie. The reason for this semantic gap is that the story line for a movie is high level information, with relationships in the content that changes as the movie progresses. Information retrieval related to the story line of a movie cannot be executed by only content-based analysis techniques. A formal model is needed, which can determine relationships among movie contents, or track meaning changes, in order to accurately retrieve the story information. Recently, story-based video analysis techniques have emerged using a social network concept for story information retrieval. These approaches represent a story by using the relationships between characters in a movie, but these approaches have problems. First, they do not express dynamic changes in relationships between characters according to story development. Second, they miss profound information, such as emotions indicating the identities and psychological states of the characters. Emotion is essential to understanding a character's motivation, conflict, and resolution. Third, they do not take account of events and background that contribute to the story. As a result, this paper reviews the importance and weaknesses of previous video analysis methods ranging from content-based approaches to story analysis based on social network. Also, we suggest necessary elements, such as character, background, and events, based on narrative structures introduced in the literature. We extract characters' emotional words from the script of the movie Pretty Woman by using the hierarchical attribute of WordNet, which is an extensive English thesaurus. WordNet offers relationships between words (e.g., synonyms, hypernyms, hyponyms, antonyms). We present a method to visualize the emotional pattern of a character over time. Second, a character's inner nature must be predetermined in order to model a character arc that can depict the character's growth and development. To this end, we analyze the amount of the character's dialogue in the script and track the character's inner nature using social network concepts, such as in-degree (incoming links) and out-degree (outgoing links). Additionally, we propose a method that can track a character's inner nature by tracing indices such as degree, in-degree, and out-degree of the character network in a movie through its progression. Finally, the spatial background where characters meet and where events take place is an important element in the story. We take advantage of the movie script to extracting significant spatial background and suggest a scene map describing spatial arrangements and distances in the movie. Important places where main characters first meet or where they stay during long periods of time can be extracted through this scene map. In view of the aforementioned three elements (character, event, background), we extract a variety of information related to the story and evaluate the performance of the proposed method. We can track story information extracted over time and detect a change in the character's emotion or inner nature, spatial movement, and conflicts and resolutions in the story.

Quantitative Analysis of Digital Radiography Pixel Values to absorbed Energy of Detector based on the X-Ray Energy Spectrum Model (X선 스펙트럼 모델을 이용한 DR 화소값과 디텍터 흡수에너지의 관계에 대한 정량적 분석)

  • Kim Do-Il;Kim Sung-Hyun;Ho Dong-Su;Choe Bo-young;Suh Tae-Suk;Lee Jae-Mun;Lee Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.202-209
    • /
    • 2004
  • Flat panel based digital radiography (DR) systems have recently become useful and important in the field of diagnostic radiology. For DRs with amorphous silicon photosensors, CsI(TI) is normally used as the scintillator, which produces visible light corresponding to the absorbed radiation energy. The visible light photons are converted into electric signal in the amorphous silicon photodiodes which constitute a two dimensional array. In order to produce good quality images, detailed behaviors of DR detectors to radiation must be studied. The relationship between air exposure and the DR outputs has been investigated in many studies. But this relationship was investigated under the condition of the fixed tube voltage. In this study, we investigated the relationship between the DR outputs and X-ray in terms of the absorbed energy in the detector rather than the air exposure using SPEC-l8, an X-ray energy spectrum model. Measured exposure was compared with calculated exposure for obtaining the inherent filtration that is a important input variable of SPEC-l8. The absorbed energy in the detector was calculated using algorithm of calculating the absorbed energy in the material and pixel values of real images under various conditions was obtained. The characteristic curve was obtained using the relationship of two parameter and the results were verified using phantoms made of water and aluminum. The pixel values of the phantom image were estimated and compared with the characteristic curve under various conditions. It was found that the relationship between the DR outputs and the absorbed energy in the detector was almost linear. In a experiment using the phantoms, the estimated pixel values agreed with the characteristic curve, although the effect of scattered photons introduced some errors. However, effect of a scattered X-ray must be studied because it was not included in the calculation algorithm. The result of this study can provide useful information about a pre-processing of digital radiography.

  • PDF

Studies on Creep Behavior for Rice Stalks (벼줄기의 크리이프 거동(擧動)에 관한 연구)

  • Huh, Yun Kun;Kim, Sung Rai;Lee, Sang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • All agricultural crops and products should be cultured, harvested, handled and processed by the proper mechanical methods in the mechanized farming systems. Agricultural crops might be injured or deformed through various working stages due to static or dynamic forces of machines. Mechanical forces had to be applied with proper degrees to the agricultural crops in incoincidence with properties of crops without any damage of crops so as to increase the work efficiency qualitatively. Knowledges of mechanical properties of agricultural materials are essential to prevent of agricultural crops in relation with mechanical farming system. This study was carried out to examine and analyze the creep behavior of the rice stalk on growing and harvesting periods by mechanical model with computer measurement system in radial directional compressive force and bending force. The creep behavior of the rice stalk could be predicted precisely and its results approached closely to the measured values. The creep behaviors were increased greatly with increase of compressive force, namely, the steady state creep behavior occurred at the force less then 25N and the logarithmic creep behavior at the force bigger than 30N. The instantaneous elastic modulus $E_o$ and the retardation time ${\tau}_K$ were increased together with increase of applied forces, meanwhile the retarded elastic modulus $E_r$ and viscosity ${\eta}_v$ were decreased with increase of applied forces in mechanical model being expected the creep behavior in relation with the level of applied forces, which was well explained that the rice stalk might be visvo-elastic material. In the creep test along the stalk portion with compressive force and bending force, the intermediate portion showed greatest values and also the lower portion showed the least values, which implied that the intermediate portions of rice stalk were very weak. The steady state creep behavior occured at the intermediate portion and the upper portion in the rice stalk at the compressive force larger than 25.0N, which showed the possibility of injury due to external forces.

  • PDF

Total Polyphenol Contents and Antioxidant Activities of Methanol Extracts from Vegetables produced in Ullung Island (울릉도산 산채류 추출물의 총 폴리페놀 함량 및 항산화 활성)

  • Lee, Syng-Ook;Lee, Hyo-Jung;Yu, Mi-Hee;Im, Hyo-Gwon;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.233-240
    • /
    • 2005
  • To discover new functional materials using edible plants, antioxidant activities of methanol extracts from various parts of seven wild vegetables were investigated in vitro. Total polyphenol contents, determined by Folin-Denis method, varied from 16.74 to $130.22{\mu}g/mg$. Radical-scavenging activities of methanol extracts were examined using ${\alpha},\;{\alpha}-diphenyl-{\beta}-pirrylhydrazyl$ (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay. Inhibition effects on peroxidation of linoleic acid determined by ferric thiocyanate (FTC) method and on oxidative degradation of 2-deoxy-D-ribose in Fenton-type reaction system were dose-dependent. Athyrium acutipinulum Kodama (leaf and rood), Achyranthes japonica (Miq.) Nakai (seed), and Solidago virga-aurea var. gigantea Nakai (root) showed relatively high antioxidant activities in various systems.

An Efficient Heuristic for Storage Location Assignment and Reallocation for Products of Different Brands at Internet Shopping Malls for Clothing (의류 인터넷 쇼핑몰에서 브랜드를 고려한 상품 입고 및 재배치 방법 연구)

  • Song, Yong-Uk;Ahn, Byung-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.129-141
    • /
    • 2010
  • An Internet shopping mall for clothing operates a warehouse for packing and shipping products to fulfill its orders. All the products in the warehouse are put into the boxes of same brands and the boxes are stored in a row on shelves equiped in the warehouse. To make picking and managing easy, boxes of the same brands are located side by side on the shelves. When new products arrive to the warehouse for storage, the products of a brand are put into boxes and those boxes are located adjacent to the boxes of the same brand. If there is not enough space for the new coming boxes, however, some boxes of other brands should be moved away and then the new coming boxes are located adjacent in the resultant vacant spaces. We want to minimize the movement of the existing boxes of other brands to another places on the shelves during the warehousing of new coming boxes, while all the boxes of the same brand are kept side by side on the shelves. Firstly, we define the adjacency of boxes by looking the shelves as an one dimensional series of spaces to store boxes, i.e. cells, tagging the series of cells by a series of numbers starting from one, and considering any two boxes stored in the cells to be adjacent to each other if their cell numbers are continuous from one number to the other number. After that, we tried to formulate the problem into an integer programming model to obtain an optimal solution. An integer programming formulation and Branch-and-Bound technique for this problem may not be tractable because it would take too long time to solve the problem considering the number of the cells or boxes in the warehouse and the computing power of the Internet shopping mall. As an alternative approach, we designed a fast heuristic method for this reallocation problem by focusing on just the unused spaces-empty cells-on the shelves, which results in an assignment problem model. In this approach, the new coming boxes are assigned to each empty cells and then those boxes are reorganized so that the boxes of a brand are adjacent to each other. The objective of this new approach is to minimize the movement of the boxes during the reorganization process while keeping the boxes of a brand adjacent to each other. The approach, however, does not ensure the optimality of the solution in terms of the original problem, that is, the problem to minimize the movement of existing boxes while keeping boxes of the same brands adjacent to each other. Even though this heuristic method may produce a suboptimal solution, we could obtain a satisfactory solution within a satisfactory time, which are acceptable by real world experts. In order to justify the quality of the solution by the heuristic approach, we generate 100 problems randomly, in which the number of cells spans from 2,000 to 4,000, solve the problems by both of our heuristic approach and the original integer programming approach using a commercial optimization software package, and then compare the heuristic solutions with their corresponding optimal solutions in terms of solution time and the number of movement of boxes. We also implement our heuristic approach into a storage location assignment system for the Internet shopping mall.

Anti-Oxidative and Anti-Inflammatory Activities of Euptelea Pleiosperma Ethanol Extract (Euptelea pleiosperma 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Park, Jung Ae;Lee, Ji Young;Kang, Ji Sook;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • In this study, the anti-oxidative and anti-inflammatory activities of Euptelea pleiosperma ethanol extract (EPEE) were evaluated using in vitro assays and cell culture model systems. EPEE possessed a more potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl than the ascorbic acid used as a positive control. EPEE effectively suppressed lipopolysaccharide (LPS), in addition to hydrogen peroxide induced reactive oxygen species on RAW 264.7 cells. Furthermore, EPEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1) and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), dose and time dependently. The modulation of HO-1 and Nrf2 expression might be regulated by mitogen-activated protein kinases and phosphatidyl inositol 3 kinase/Akt as their upstream signaling pathways. On the other hand, EPEE inhibited LPS induced nitric oxide (NO) formation without cytotoxicity. Suppression of NO formation was the result of the down regulation of inducible NO synthase (iNOS) by EPEE. Suppression of NO and iNOS by EPEE may be modulated by their upstream transcription factor, nuclear factor ${\kappa}B$, and AP-1 pathways. Taken together, these results provide important new insights into E. pleiosperma, namely that it possesses anti-oxidative and anti-inflammatory activities, indicating that it could be utilized as a promising material in the field of nutraceuticals.

A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis (일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구)

  • Park, Byung Eun;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.19-36
    • /
    • 2015
  • Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Deep Learning Architectures and Applications (딥러닝의 모형과 응용사례)

  • Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.