• 제목/요약/키워드: model stability

검색결과 5,250건 처리시간 0.033초

AN UNCONDITIONALLY GRADIENT STABLE NUMERICAL METHOD FOR THE OHTA-KAWASAKI MODEL

  • Kim, Junseok;Shin, Jaemin
    • 대한수학회보
    • /
    • 제54권1호
    • /
    • pp.145-158
    • /
    • 2017
  • We present a finite difference method for solving the Ohta-Kawasaki model, representing a model of mesoscopic phase separation for the block copolymer. The numerical methods for solving the Ohta-Kawasaki model need to inherit the mass conservation and energy dissipation properties. We prove these characteristic properties and solvability and unconditionally gradient stability of the scheme by using Hessian matrices of a discrete functional. We present numerical results that validate the mass conservation, and energy dissipation, and unconditional stability of the method.

견비선형을 갖는 제어시스템에 대한 기준모델 피드백제어 및 안정성평가 (Reference Model Feedback Control and Stability Evaluation for Control System with Hard Non-linearities)

  • 정유철;이건복
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.72-78
    • /
    • 2006
  • The paper proposes reference model error feedback control scheme for motion control system with hard non-linear components as like saturation and dead-zone in plant input part. Additionally, the plant has the system uncertainty effected by plant model parameter deviation and disturbance. The control algorithm uses the reference model to apply additional feedback loop with the error between reference model output and actual output effected by disturbance and non-linear components. And the stability evaluation based on Popov stability and controller design method are formulated to be performed. The effectiveness of the proposed scheme is examined by simulations. The results are proven by reasonable performances following reference model responses with good disturbance rejection performance without over-tuning of controller.

유연체 회전축 모델을 이용한 자기부상형 플라이휠 에너지 저장장치의 제어시스템 안정성 및 성능 해석 (Analysis of Control Stability and Performance of Magnetically-Levitated Flywheel Energy Storage System using Flexible Rotor Model)

  • 유승열;이욱륜;배용채;노명규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.258-263
    • /
    • 2009
  • This paper describes an analysis of the stability and performance of a large-capacity flywheel energy storage system (FESS) supported by active magnetic bearings. We designed and manufactured the system that can store up to 5kWh of usable energy at the maximum speed of 18,000 rpm. In order to analyze the stability of the systems accurately, we derived a rigid body rotor model, flexible rotor model using finite-element method, and a reduced-order model using modal truncation. The rotor model is combined with those of active magnetic bearings, amplifiers, and position sensors, resulting in a system simulation model. This simulation model is validated against experimental measurements. The stability of the system is checked from the pole locations of the closed-loop transfer functions. We also investigated the sensitivity function to quantify the robustness of the systems to the disturbances such as mass imbalance and sensor noises.

  • PDF

입력변수의 조건에 따른 대기확산모델의 민감도 분석 (Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable)

  • 정진도;김장우;김정태
    • 한국환경과학회지
    • /
    • 제14권9호
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

고속 롤투롤 인쇄기의 장력제어시스템 안정도 해석 (Stability Analysis of the Tension Control System of a High-speed Roll-to-Roll Printing Machine)

  • 강철구;이봉주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.873-878
    • /
    • 2007
  • Stability of high-speed roll-to-roll printing machines is one of the most important factors that are required for the printing machines to operate properly and to obtain reasonable printing performance. This paper proposes a new model for the web-tension system of a high-speed gravure printing machine considering span-length variations due to dancer rollers, and analyzes the stability of plant dynamics of the printing machine using the proposed model. Span-length variations due to dancer motions are considered for the modeling of plant dynamics in two ways; one is to include the effect of span-length variations without considering dancer inertias and viscous frictions, and the other is to include the effect of span-length variations with considering dancer inertias and viscous frictions. The stability of the plant model is analyzed for various web-speeds using the eigenvalues of the linearized model about operating points.

  • PDF

미사일 모델의 피치 동안정미계수 측정을 위한 강제진동기법의 적용 (Application of Forced Oscillation Technique for Pitch Dynamic Stability Derivatives of a Missile Model)

  • 김승필;조환기;백승욱
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.81-87
    • /
    • 2000
  • This paper presents an application of forced oscillation technique to measure pitch dynamic stability derivatives of a missile model in the low speed wind tunnel. The missile model is oscillated by D.C. electric servomotor with constant amplitudes and frequencies. Phase shift is determined as the difference of peak values between input and output signals from the dynamic stability balance installed at the center of gravity of the model. Stability derivatives were calculated by using phase shifts, amplitudes, forcing moments and input frequencies. Test results show the proper usage of the force oscillation technique with good damping effects.

  • PDF

Numerical Nonlinear Stability of Traveling Waves for a Chemotaxis Model

  • Min-Gi Lee
    • Kyungpook Mathematical Journal
    • /
    • 제63권2호
    • /
    • pp.141-154
    • /
    • 2023
  • We study the stability of traveling waves of a certain chemotaxis model. The traveling wave solution is a central object of study in a chemotaxis model. Kim et al. [8] introduced a model on a population and nutrient densities based on a nonlinear diffusion law. They proved the existence of traveling waves for the one dimensional Cauchy problem. Existence theory for traveling waves is typically followed by stability analysis because any traveling waves that are not robust against a small perturbation would have little physical significance. We conduct a numerical nonlinear stability for a few relevant instances of traveling waves shown to exist in [8]. Results against absolute additive noises and relative additive noises are presented.

항공기의 롤운동 동안정미계수 측정에 관한 연구 (A Study on the Measurement of Dynamic Stability Derivatives in the Rolling Motion of Aircraft)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제21권4호
    • /
    • pp.41-46
    • /
    • 2013
  • 본 논문은 항공기의 롤운동에 대한 동안정미계수 측정을 위한 실험적 기법에 관하여 기술하였다. 항공기 동안정미계수의 실험적인 추출 방법은 항공기 모델을 이용하여 풍동에서 진동실험을 수행하는 것이다. 항공기 모델의 진동은 강제진동기법이 적용되었다. 강제진동 기법은 항공기 모델의 내부에 밸런스형의 측정장치를 설치하고 모델을 풍동 시험부 내에 고정한 후에 강제로 진동시키면서 밸런스로부터 측정값을 획득하는 방법이다. 롤링 운동에 대한 동안정미계수는 풍속이 있는 상태에서 강제진동에 의한 항공기 모델의 모멘트와 진동 주파수 및 진폭을 측정한 후에 자료처리를 통하여 계산되었다. 풍동실험의 결과는 타 기관에서 측정된 표준동역학모델의 롤 동안정미계수와 유사한 결과가 얻어짐을 확인하였다.

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF