• Title/Summary/Keyword: model stability

Search Result 5,261, Processing Time 0.039 seconds

Development and Performance Evaluation of ESP Systems for Enhancing the Lateral Stability During Cornering (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가)

  • Boo Kwang-Suck;Song Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1276-1283
    • /
    • 2006
  • This study proposes two ESP systems which are designed to enhance the lateral stability of a vehicle. A BESP uses an inner rear wheel braking pressure controller, while a EBESP employs an inner rear wheel and front outer wheel braking pressure controller. The performances of the BESP and EBESP are evaluated for various road conditions and steering inputs. They reduce the slip angle and eliminate variation in the lateral acceleration, which increase the controllability and stability of the vehicle. However EBESP enhances the lateral stability and comfort. A driver model is also developed to control the steer angle input. It shows good performances because the vehicle tracks the desired lane very well.

Code Development for Online Assessment of Combustion Stability Margin by Utilizing Damping Ratios of Dynamic Pressure Data (동압 데이터의 감쇠계수를 활용한 연소 안정마진 실시간 평가 코드 개발)

  • Song, Won Joon;Ahn, Kwangho;Park, Seik;Kim, Sungchul;Cha, Dong Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.117-119
    • /
    • 2013
  • Combustion stability margin of a model gas turbine has been assessed by utilizing damping ratios of measured dynamic pressure data. It is known that acoustic oscillations in combustion chambers can be described as a superposition of nonlinearly interacting oscillators. Based on this theoretical background, CSMA (Combustion Stability Margin Assessment) code has been developed. The code has been employed into a model gas turbine combustion experiment, focused on the combustion instability, to show its capability to determine the damping ratio of measured dynamic pressure and further to assess combustion stability margin of the experiment, and turned out that the code works well.

  • PDF

A Study on the Dynamic Stability of Air-to-Ground Missile Using the Free Vibration Technique (자유진동기법을 이용한 공대지 미사일의 동안정성에 관한 연구)

  • 박재현;백승욱;조환기;허원욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-69
    • /
    • 1999
  • A dynamic stability test was performed to determine dynamic stability derivatives for the pure pitching motion of air-to-ground missile model in the low speed wind tunnel. The free vibration technique was employed to acquire oscillation characteristics of the model for damping coefficients. Damping coefficients are obtained by the method of logarithmic decrement. Results show good damping effects and stability capability at Mach numbers 0.1 and 0.2, with the angle of attack ranging from -15 to +20 degrees.

  • PDF

Control Algorithm of Thyristor Rectifier to Improve Arc Stability in DC Arc Furnace

  • Jung, Kyungsub;Suh, Yongsug;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.371-372
    • /
    • 2012
  • In this paper fundamental features of the arc stability in DC arc furnace of 720V/100kA/72MW have been investigated. Cassie-Mayr arc model has been employed for the target dc arc furnace. In order to characterize the parameters of Cassie-Mayr arc model and the behavior of unstable arc dynamics, the advanced arc simulations of magneto-hydrodynamics (MHD) has been performed. Based on the results of MHD simulation, dc arc dynamic resistance is proposed to be an effective arc stability function reflecting the instability of dynamic arc behavior. The experimental result confirms the usefulness of proposed dynamic arc resistance as arc stability function. The proposed arc stability function can be regarded as an effective criterion for the overall power conversion system to maintain highly stable arcing operation leading to better productivity and reliability.

  • PDF

A Study on the Seismic Stability of an Existing Switchboard for Emergency Diesel Generator (비상 디젤발전기용 배전반의 내진안전성에 관한 연구)

  • Neung_Gyo Ha;Chae-Sil Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1341-1347
    • /
    • 2023
  • This study proposes to ensure the seismic stability of an existing switchboard for emergency diesel generator by applying mode analysis, static analysis and dynamic analysis. First, a three dimensional model for the swithboard was made with simplification for mode analysis. Next, The mode analysis for the finite element model of the existing switchboard was performed. The 1st natural frequency below 33 Hz, the seismic safety cutoff frequency, was calculated to be 21.943 Hz. Finally, based on the seismic stability theory, the von-Mises equivalent stresses derived by structural analysis and response spectrum analysis under the normal and faulted conditions were 74.179 MPa and 49.769 MPa, respectively. These are less than specified allowable stresses. So seismic stability was confirmed.

Development of Stability Evaluation Algorithm for C.I.P. Retaining Walls During Excavation (가시설 벽체(C.I.P.)의 굴착중 안정성 평가 알고리즘 개발)

  • Lee, Dong-Gun;Yu, Jeong-Yeon;Choi, Ji-Yeol;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.13-24
    • /
    • 2023
  • To investigate the stability of temporary retaining walls during excavation, it is essential to develop reverse analysis technologies capable of precisely evaluating the properties of the ground and a learning model that can assess stability by analyzing real-time data. In this study, we targeted excavation sites where the C.I.P method was applied. We developed a Deep Neural Network (DNN) model capable of evaluating the stability of the retaining wall, and estimated the physical properties of the ground being excavated using a Differential Evolution Algorithm. We performed reverse analysis on a model composed of a two-layer ground for the applicability analysis of the Differential Evolution Algorithm. The results from this analysis allowed us to predict the properties of the ground, such as the elastic modulus, cohesion, and internal friction angle, with an accuracy of 97%. We analyzed 30,000 cases to construct the training data for the DNN model. We proposed stability evaluation grades for each assessment factor, including anchor axial force, uneven subsidence, wall displacement, and structural stability of the wall, and trained the data based on these factors. The application analysis of the trained DNN model showed that the model could predict the stability of the retaining wall with an average accuracy of over 94%, considering factors such as the axial force of the anchor, uneven subsidence, displacement of the wall, and structural stability of the wall.

Landslide Stability Analysis and Prediction Modeling with Landslide Occurrences on KOMPSAT EOC Imagery

  • Chi, Kwang-Hoon;Lee, Ki-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Landslide prediction modeling has been regarded as one of the important environmental applications in GIS. While, landslide stability in a certain area as collateral process for prediction modeling can be characterized by DEM-based hydrological features such as flow-direction, flow-accumulation, flow-length, wetness index, and so forth. In this study, Slope-Area plot methodology followed by stability index mapping with these hydrological variables is firstly performed for stability analysis with actual landslide occurrences at Boeun area, Korea, and then Landslide prediction modeling based on likelihood ratio model for landslide potential mapping is carried out; in addition, KOMPSAT EOC imagery is used to detect the locations and scalped scale of Landslide occurrences. These two tasks are independently processed for preparation of unbiased criteria, and then results of those are qualitatively compared. As results of this case study, land stability analysis based on DEM-based hydrological variables directly reflects terrain characteristics; however, the results in the form of land stability map by landslide prediction model are not fully matched with those of hydrologic landslide analysis due to the heuristic scheme based on location of existed landslide occurrences within prediction approach, especially zones of not-investigated occurrences. Therefore, it is expected that the resets on the space-robustness of landslide prediction models in conjunction with DEM-based landslide stability analysis can be effectively utilized to search out unrevealed or hidden landslide occurrences.

Stability of rectangular tunnel in improved soil surrounded by soft clay

  • Siddharth Pandey;Akanksha Tyagi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.491-505
    • /
    • 2023
  • The practical usage of underground space and demand for vehicular tunnels necessitate the construction of non-circular wide rectangular tunnels. However, constructing large tunnels in soft clayey soil conditions with no ground improvement can lead to excessive ground deformations and collapse. In recent years, in situ ground improvement techniques such as jet grouting and deep cement mixing are often utilized to perform cement-stabilisation around the tunnel boundary to prevent large deformations and failure. This paper discusses the stability characteristics and failure behaviour of a wide rectangular tunnel in cement-treated soft clays. First, the plane strain finite element model is developed and validated with the results of centrifuge model tests available in the past literature. The critical tunnel support pressures computed from the numerical study are found to be in good agreement with those of centrifuge model tests. The influence of varying strength and thickness of improved soil surround, and cover depth are studied on the stability and failure modes of a rectangular tunnel. It is observed that the failure behaviour of the tunnel in improved soil surround depends on the ratio of the strength of improved soil surround to the strength of surrounding soil, i.e., qui/qus, rather than just qui. For low qui/qus ratios,the stability increases with the cover; however, for the high strength improved soil surrounds with qui >> qus, the stability decreases with the cover. The failure chart, modified stability equation, and stability chart are also proposed as preliminary design guidelines for constructing rectangular tunnels in the improved soil surrounded by soft clays.

STABILITY AND THE EFFECT OF HARVESTING IN A BUDWORM POPULATION MODEL

  • Zaman, Gul;Kang, Yong-Han;Jung, Il-Hyo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.163-173
    • /
    • 2010
  • In this work, we consider a nonlinear budworm model by a system of three ordinary differential equations originally created by Ludwig et al. in 1978. The nonlinear system describes the dynamics of the interaction between a budworm and a fir forest. We introduce stability techniques to analyze the dynamical behavior of this nonlinear system. Then we use constant effort harvesting techniques to control the budworm population. We also give numerical simulations of the population model with harvest and without harvest.