Journal of the Computational Structural Engineering Institute of Korea
/
v.26
no.2
/
pp.165-171
/
2013
Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.
This study investigated the use of Geobacter lovleyi with TBOS(Tetrabutoxysilane) for TCE(Trichloroethylene) dechlorination. The TCE dechlorination by Geobacter lovleiy was mathematically described as the independent variables such as initial concentration of TCE, protein mass of Geobacter lovleyi and initial concentration of TOBS, and these were modeled by the use of response surface methodology(RSM). These experiments were carried out as a Box-Behnken Design(BBD) consisting of 15 experiments. The application of RSM yielded the following equation, which is empirical relationship for the dechlorination efficiency($Y_1$, %) of TCE and first order kinetic constant of TCE($Y_2,\;d^{-1}$) by independent variables in coded unit : $Y_1=-11.50X_1$(initial concentration of TCE) + $4.25X_2$(protein mass as Geobacter lovleyi injected mass) - $4.75X_3$(initial concentration of TBOS) - ${6.58X_1}^2$ - ${8.58X_2}^2$ + 93.67, $Y_2=-10.92X_1+5.06X_2-4.89X_3-{4.93X_3}^2-2.19X_1X_2+2.54X_1X_3-2.19X_2X_3+16.71$. In this case, the value of the adjusted determination coefficient(adjusted $R^2$= 0.975 and 0.934) were closed to 1, showing a high significance of the model. Statistical results showed the order of TCE dechlorination at experimental factors to be initial TCE concentration > initial TBOS concentration > protein mass, but the interaction effects were non-significant.
Production of recombinant proteins by excretory expression has many advantages over intracellular expression in Escherichia coli. Hyperexpression of a secretory exoglucanase, Exg, of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of E. coli. In this study, we demonstrated that overexpression of the PspA in the JM101(pM1VegGcexL-pspA) strain enhanced excretion of Exg to 1.65 U/ml using shake-flask cultivation, which was 80% higher than the highest yield previously obtained from the optimized JM101(pM1VegGcexL) strain. A much higher excreted Exg activity of 4.5 U/ml was further achieved with high cell density cultivation using rich media. Furthermore, we showed that the PspA overexpression strain enjoyed an elevated critical value (CV), which was defined as the largest quotient between the intracellular unprocessed precursor and its secreted mature counterpart that was still tolerable by the host cells prior to the onset of cell death, improving from the previously determined CV of 20/80 to the currently achieved CV of 45/55 for Exg. The results suggested that the PspA overexpression strain might tolerate a higher level of precursor Exg making use of the SecYEG pathway for secretion. The reduced lethal effect might be attributable to the overexpressed PspA, which was postulated to be able to reduce membrane depolarization and damage. Our findings introduce a novel strategy of the combined application of metabolic engineering and construct optimization to the attainment of the best possible E. coli producers for secretory/excretory production of recombinant proteins, using Exg as the model protein.
Lee, Mi Hyun;Hong, Sun Hee;Na, Chae Sun;Kim, Jeong Gyu;Kim, Tae Wan;Lee, Yong Ho
Korean Journal of Environmental Biology
/
v.35
no.2
/
pp.207-214
/
2017
There is little information about the seed longevity of wild plants, although seed bank storage is an important tool for biodiversity conservation. This study was conducted to predict the seed viability equation of Agastache rugosa. The A. rugosa seeds were stored at moisture contents ranging from 2.7 to 12.5%, and temperatures between 10 and $50^{\circ}C$. Viability data were fitted to the seed viability equation in a one step and two step approach. The A. rugosa seeds showed orthodox seed storage behaviour. The viability constants were $K_E=6.9297$, $C_W=4.2551$$C_H=0.0329$, and $C_Q=0.00048$. The P85 of A. rugosa seeds was predicted to 152 years under standard seed bank conditions. The P85 predicted by seed viability equation can be used as basic information for optimization of seed storage processes.
In the modeling processes of 3D computer animation, methods to build optimal work conditions to realize real forms for more efficient works have been advanced. Digital sculpting software, published in 1999, ZBrush has been positioned as an essential factor in character model work requiring of realistic descriptions through different manufacturing methods from previous modeling work processes and easy shape realization. Their functional areas are expanding. So, in this production case paper, as a method to product more optimized animation character models, the efficiency of production method linking digital sculpting software (Z-Brush) and animation production software (Maya) was deliberated and its consequences and implications are suggested. To this end, first the technical features of polygon modeling and Retopology were reviewed. Second, based on it, the efficiency of animation character modeling work processes through step linking ZBrush and Maya suggested in this paper was analyzed. Third, based on the features drawn before, in order to prove the hypothesis on modeling optimization method suggested in this paper, the production process of character Dumvee from a short animation film, 'Cula & Mina' was analyzed as an example. Through this study, it was found that technical approach easiness and high level of completion could be realized through two software linked work processes. This study is considered to be a reference for optimizing production process of related industries or modeling-related classes by deliberating different modeling process linked systems.
The major reason to construct large dams is to store surplus water during rainy seasons and utilize it for water supply in dry seasons. Reservoir storage has to meet a pre-defined target to satisfy water demands and cope with a dry season when the availability of water resources are limited temporally as well as spatially. In this study, a Hedging rule that reduces total reservoir outflow as drought starts is applied to alleviate severe water shortages. Five stages for reducing outflow based on the current reservoir storage are proposed as the Hedging rule. The objective function is to minimize the total discrepancies between the target and actual reservoir storage, water supply and demand, and required minimum river discharge and actual river flow. Mixed Integer Linear Programming (MILP) is used to develop a multi-reservoir operation system with the Hedging rule. The developed system is applied for the Han River basin that includes four multi-purpose dams and one water supplying reservoir. One of the fours dams is primarily for power generation. Ten-day-based runoff from subbasins and water demand in 2003 and water supply plan to water users from the reservoirs are used from "Long Term Comprehensive Plan for Water Resources in Korea" and "Practical Handbook of Dam Operation in Korea", respectively. The model was optimized by GAMS/CPLEX which is LP/MIP solver using a branch-and-cut algorithm. As results, 99.99% of municipal demand, 99.91% of agricultural demand and 100.00% of minimum river discharge were satisfied and, at the same time, dam storage compared to the storage efficiency increased 10.04% which is a real operation data in 2003.
Proceedings of the Korea Database Society Conference
/
1999.06a
/
pp.175-186
/
1999
Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.
The stock that is the first step for preparation of soups and purees links to the taste of food. Many types of vegetable have been used in stocks, but this study focused on stocks prepared with sweet pumpkin. The stock preparation conditions including the weight of sweet pumpkin, the water volume, and the boiling time at $97^{\circ}C$ were optimized by response surface methodology. The quality characteristics of the resulting stock were investigated. The color, flavor, taste and overall acceptability were dependent parameters. A model equation was proposed with regard to the sweet pumpkin weight, water volume, and boiling time at $97^{\circ}C$. A sweet pumpkin weight of 357.9 to 403.0 g, a water volume of 689.8 to 768.5 mL, and a boiling time of 9.9 to 10.3 min at $97^{\circ}C$ were found to be the optimal stock preparation conditions. The quality characteristics of the sweet pumpkin stock prepared under the optimized conditions were pH 6.64, total acidity 0.18%, soluble solids $2.39\;^{\circ}Brix$, color value (L, 99.07 a, -2.43 b, 11.82), total polyphenol 280.75 mg/L, and electron donating ability 21.32%.
Proceedings of the Korea Inteligent Information System Society Conference
/
1999.03a
/
pp.175-186
/
1999
Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.
KIPS Transactions on Software and Data Engineering
/
v.7
no.3
/
pp.77-90
/
2018
Software Defect Prediction (SDP) is a field of study that identifies defective modules. With insufficient local data, a company can exploit Cross-Project Defect Prediction (CPDP), a way to build a classifier using dataset collected from other companies. Most machine learning algorithms for SDP have used more than one parameter that significantly affects prediction performance depending on different values. The objective of this study is to propose a parameter selection technique to enhance the performance of CPDP. Using a Harmony Search algorithm (HS), our approach tunes parameters of cost-sensitive boosting, a method to tackle class imbalance causing the difficulty of prediction. According to distributional characteristics, parameter ranges and constraint rules between parameters are defined and applied to HS. The proposed approach is compared with three CPDP methods and a Within-Project Defect Prediction (WPDP) method over fifteen target projects. The experimental results indicate that the proposed model outperforms the other CPDP methods in the context of class imbalance. Unlike the previous researches showing high probability of false alarm or low probability of detection, our approach provides acceptable high PD and low PF while providing high overall performance. It also provides similar performance compared with WPDP.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.