The Statistical Optimization of TCE Dechlorination by Geobacter lovleyi Using Box-Behnken Design

Box-Behnken법을 이용한 Geobacter lovleyi의 TCE 탈염소화 공정 최적화 연구

  • 차재훈 (경기대학교 환경에너지시스템공학과) ;
  • 안상우 (한양대학교 건설환경공학과) ;
  • 천석영 (경기대학교 환경에너지시스템공학과) ;
  • 박재우 (한양대학교 건설환경공학과) ;
  • 장순웅 (경기대학교 환경에너지시스템공학과)
  • Published : 2012.11.01

Abstract

This study investigated the use of Geobacter lovleyi with TBOS(Tetrabutoxysilane) for TCE(Trichloroethylene) dechlorination. The TCE dechlorination by Geobacter lovleiy was mathematically described as the independent variables such as initial concentration of TCE, protein mass of Geobacter lovleyi and initial concentration of TOBS, and these were modeled by the use of response surface methodology(RSM). These experiments were carried out as a Box-Behnken Design(BBD) consisting of 15 experiments. The application of RSM yielded the following equation, which is empirical relationship for the dechlorination efficiency($Y_1$, %) of TCE and first order kinetic constant of TCE($Y_2,\;d^{-1}$) by independent variables in coded unit : $Y_1=-11.50X_1$(initial concentration of TCE) + $4.25X_2$(protein mass as Geobacter lovleyi injected mass) - $4.75X_3$(initial concentration of TBOS) - ${6.58X_1}^2$ - ${8.58X_2}^2$ + 93.67, $Y_2=-10.92X_1+5.06X_2-4.89X_3-{4.93X_3}^2-2.19X_1X_2+2.54X_1X_3-2.19X_2X_3+16.71$. In this case, the value of the adjusted determination coefficient(adjusted $R^2$= 0.975 and 0.934) were closed to 1, showing a high significance of the model. Statistical results showed the order of TCE dechlorination at experimental factors to be initial TCE concentration > initial TBOS concentration > protein mass, but the interaction effects were non-significant.

본 연구는 TBOS를 기질로 적용한 Geobacter lovleyi의 TCE 탈염소화 공정에 관하여 조사하였다. Geobacter lovleiy를 이용한 TCE 탈염소화 반응은 TCE 초기농도와 Geobacter lovleyi 주입량, 초기 TBOS 농도의 독립변수를 수학적으로 표시하였고, 반응표면법(RSM)을 활용하여 모델화하였다. 이 실험들은 Box-Behnken Design(BBD)을 통해 계획된 15개의 실험을 통해 이루어졌다. RSM을 통하여 TCE 제거효율과 독립변수들의 모델식이 도출되었다 : $Y_1$= -11.50(initial concentration of TCE) + 4.25(단백질 양, 주입된 Geobacter lovleyi의 양) - 4.75(initial concentration of TBOS) - ${6.58X_1}^2$ - ${8.583X_3}^2$ + 93.67, $Y_2=-10.92X_1+5.06X_2-4.89X_3-{4.93X_3}^2-2.19X_1X_2+2.54X_1X_3-2.19X_2X_3+16.71$. 도출된 반응모델은 수정결정계수는 각 0.975, 0.934로 1에 가깝게 나타났으며, 모델의 기여율이 높은 것으로 나타났다. 또한, 통계적 분석결과 TCE 탈염소화 효율에 미치는 영향은 TCE 초기농도 > TBOS 초기농도 > 단백질 양의 순으로 나타났으며, 상호항의 영향은 나타나지 않았다.

Keywords

References

  1. An, S. W., Choi, J. Y., Cha, M. W. and Park, J. W.(2010a), Adsorption Characterization of Cd by Coal Fly Ash Using Response Surface Methodology (RSM), Journal of the Korean Geo-Environmental Society, Vol. 11, No. 1, pp. 19-26.
  2. An, S. W., Kim, Y. J., Chun, S. Y., Lee, S. J., Park, J. W. and Chang, S. W.(2010b), Competitive Extraction of Chlorinated Solvents by Headspace SPME GC/FID, Journal of the Korean Geo-Environmental Society, Vol. 11, No. 5, pp. 61-67.
  3. Azizian, M. F., Marshall, I.P.G., Behrens, S., Spormann, A.M., Semprini, L.(2010), Comparison of Lactate, Formate, and Propionate as Hydrogen Donors for the Reductive Dehalogenation of Trichloroethene in a Continuous-flow Column, Journal of Contaminant Hydrology, Vol. 113, pp. 77-92. https://doi.org/10.1016/j.jconhyd.2010.02.004
  4. Chun, S. Y. and Chang, S. W., The Study of Statistical Optimization of MTBE Removal by Photolysis(UV/$H_2O_2$), Journal of the Korean Geo-Environmental Society, Vol. 12, No. 9, pp. 55-61.
  5. Duhamela, M., Wehra, S. D., Yua, L., Rizvia, H., Seepersada, D., Dworatzeka, S., Coxb, E. E. and Edwardsa, E. A.(2002), Comparison of Anaerobic Dechlorinating Enrichment Cultures Maintained on Tetrachloroethene, Trichloroethene, Cis-dichloroethene and Vinyl Chloride, Water Research, Vol. 36, No. 17, pp. 419 3-4202. https://doi.org/10.1016/S0043-1354(02)00151-3
  6. Kim, B. H, Cho, D. H., Sung, Y. B., Ahn, C. Y., Yoon, B. D., Koh, S. C., Oh, h. M. and Kim, H. S.(2010), Analysis of Microbial Community during the Anaerobic Dechlorination of PCE/TCE by DGGE, Kor. J. Microbiol. Biotechnol, Vol. 38, No. 4, pp. 448-454.
  7. Kim, Y. J., An, S. W., Jang. J. W, Yeo, I. H, Kim, H. S. and Park, J. W.(2012), Kinetic Studies of Nanoscale Zero-Valent Iron and Geobacter lovleyi for Trichloroethylene Dechlorination, The Journal of Korean Society of Soil and Groundwater Environment , Vol. 17. No. 1, pp. 33-41.
  8. Lee. M. J. and Oh, J. I.(2009), Sonolysis of Trichloroethylene in a Continuous Flow Reactor with the Multi Ultrasound Irradiation, Journal of Korean Society of Environmental Engineers, Vol. 31, No. 6. pp. 419-427.
  9. Lee. S. B.(2005), MINITAB을 활용한 예제중심의 실험계획법, 이레테크, 경기도, pp. 185-239.
  10. Lee. S. B.(2008), MINITAB을 이용한 공학통계자료 분석, 이레테크, 경기도, pp. 261-222.
  11. Maa, X., Novakb, P. J., Semmensb, M. J., Clappc, L. W. and Hozalskib, R. M.(2006), Comparison of Pulsed and Continuous Addition of H2 Gas Via Membranes for Stimulating PCE Biodegradation in Soil Columns, Water research, Vol. 40, No. 6, pp. 1155-1166. https://doi.org/10.1016/j.watres.2006.01.005
  12. Semprini, L(1997), Strategies for the Aerobic Co-metabolism of Chlorinated Solvents, Curr. Opin. Biotechnol, Vol. 8, No. 3, pp. 296-308. https://doi.org/10.1016/S0958-1669(97)80007-9
  13. Song, W. Y. and Chang, S. W.(2009), The Study of Statistical Optimization of NDMA Tretment using UV-Process, Journal of Korean Society on Water Quality, Vol. 25, No. 1, pp. 96-101.
  14. Stevens, T. O., and Tiedje, J. M.(1999), Carbon Dioxide Fixation and Mixotrophic Metabolism by Strain DCB-1, a Dehalogenating Anaerobic Bacterium, Applied and Evironmenta, Appliedand Environmental Microbiology, Vol. 54, No. 12, pp. 2944-2948.
  15. Yang, Y. and McCarty, P. L.(2000), Biologically Enhanced Dissolution of Tetrachloroethene DNAPL, Environ. Sci. Technol., Vol. 56, No. 1-2, pp. 265-269.
  16. Yeh, C. K., Wu, H. M., and Chen, T. C.(2003), Chemical Oxidation Ofchlorinated Non-aqueous Phase Liquid by Hydrogen Peroxide in Natural Sand Systems, J. of Hazard. Mater., Vol. 96, No. 1, pp. 29-51. https://doi.org/10.1016/S0304-3894(02)00147-4
  17. Yu, S. H. and Semprini, L.(2009), Enhanced Reductive Dechlorination of PCE DNAPL with TBOS as a Slow-release Electron Donor, Jounal of hazardous materials, Vol. 167, No. 1-3, pp. 97-104. https://doi.org/10.1016/j.jhazmat.2008.12.087
  18. Zhao, J., Fang, Y., Scheibe, T. D., Lovley, D. R. and Mahadevan, R.(2010), Modeling and Sensitivity Analysis of Electron Capacitance for Geobacter in Sedimentary Environments, Urnal of Contaminant Hydrology, Vol. 112, No. 1-4, pp. 30-44. https://doi.org/10.1016/j.jconhyd.2009.10.002