• Title/Summary/Keyword: model method

Search Result 44,867, Processing Time 0.058 seconds

A Type of Subsection Model for a Permanent Magnet Bar and its Leakage Permeance Calculation Method in an Open Magnetic Circuit

  • Liang, Huimin;You, Jiaxin;Yang, Wenying;Zhai, Guofu
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • The equivalent model of a permanent magnet (PM) plays an important role in electromagnetic system calculation. A type of subsection model for a PM bar is established, to improve the accuracy of the traditional equivalent circuit method. The mathematical expression, and its end verification condition, are presented. Based on the analytical method and finite element method, the leakage permeance calculation of a PM bar in an open magnetic circuit is investigated. As an example, for a given certain type of PM bar, the magnetic flux of each section is validated by experiment, and by simulation. This model offers a foundation for building a high accuracy equivalent magnetic PM model in an electromagnetic system.

A Time Domain Modal Parameter Estimation Method for Multiple Input-Output Systems (시간영역에서의 다중 입력-출력시스템의 모드매개변수 추정방법)

  • 이건명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1997-2004
    • /
    • 1994
  • A model analysis method has been developed in the paper. The method estimates the modal parameters of multiple input-output systems, assesses their quality, and seperates structural modes form computation ones. The modal parameter extraction algorithm is the least squares method with a finite difference model relating input and output time data. The quality of the estimated system model can be assessed in narrow frequency bands by comparing the measured and model predicted responses in time domain with the aid of digital filters. Structural modes can be effectively separated from computational ones using the convergence factor which represents the pole convergence rate. The modal analysis method has been applied to simulated and experimental vibration data to evaluate its utility and limitations.

Updating of Finite Element Model and Joint Identification with Frequency Response Function (주파수응답함수를 이용한 유한요소모델의 개선 및 결합부 동정)

  • 서상훈;지태한;박영필
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • Despite of the development in the finite element method, it is difficult to get the finite element model describing the dynamic characteristics of the complex structure exactly. Therefore a number of different methods have been developed in order to update the finite element model of a structure using vibration test data. This paper outlines the basic formulation for the frequency response function based updating method. One important advantage of this method is that the intermediate step of performing an eigensolution extraction is unnecessary. Using simulated experimental data, studies are conducted in the case of 10 DOF discrete system. The solution of noisy and incomplete experimental data is discussed. True measured frequency response function data are used for updating the finite element model of a beam and a plate. Its applicability to the joint identification is also considered.

  • PDF

Semiparametric and Nonparametric Modeling for Matched Studies

  • Kim, In-Young;Cohen, Noah
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.179-182
    • /
    • 2003
  • This study describes a new graphical method for assessing and characterizing effect modification by a matching covariate in matched case-control studies. This method to understand effect modification is based on a semiparametric model using a varying coefficient model. The method allows for nonparametric relationships between effect modification and other covariates, or can be useful in suggesting parametric models. This method can be applied to examining effect modification by any ordered categorical or continuous covariates for which cases have been matched with controls. The method applies to effect modification when causality might be reasonably assumed. An example from veterinary medicine is used to demonstrate our approach. The simulation results show that this method, when based on linear, quadratic and nonparametric effect modification, can be more powerful than both a parametric multiplicative model fit and a fully nonparametric generalized additive model fit.

  • PDF

The Support Types of the Tunnel for Centrifuge Model (터널의 지보방법에 관한 원심모형실험(遠心模型實驗))

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.199-209
    • /
    • 2002
  • This research is experimental thesis to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

Three-dimensional Active Shape Model for Object Segmentation (관심 객체 분할을 위한 삼차원 능동모양모델 기법)

  • Lim, Seong-Jae;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.335-336
    • /
    • 2006
  • In this paper, we propose an active shape image segmentation method for three-dimensional(3-D) medical images using a generation method of the 3-D shape model. The proposed method generates the shape model using a distance transform and a tetrahedron method for landmarking. After generating the 3-D model, we extend the training and segmentation processes of 2-D active shape model(ASM) and improve the searching process. The proposed method provides comparative results to 2-D ASM, region-based or contour-based methods. Experimental results demonstrate that this algorithm is effective for a semi-automatic segmentation method of 3-D medical images.

  • PDF

Stable PID Tuning for High-order Integrating Processes using Model Reduction Method (모델축소를 이용한 고차계 적분공정의 안정한 PID 동조)

  • Lee, Won-Hyok;Hwang, Hyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2010-2016
    • /
    • 2007
  • PID control is windely used to control stable processes, However, its application to integrating processes is less common. In this paper, we proposed a stable PID controller tuning method for integrating processes with time delay using model reduction method. For proposed model reduction method, it disconnect an integrating factor from integrating processes and reduces separate process using reduction method. and it connect an integrating factor to reduced model. We can obtain stable integrating processes using P controller in inner feedback loop and PID tuning is then used to cancel the pole of the feedback loop. This guarantees both robustness and performance. Simulation examples are given to show the good performance of the proposed tuning method comparing with other methods.

Finite Element Model Updating of Simple Beam Considering Boundary Conditions (경계조건을 고려한 단순보의 유한요소모델개선)

  • Kim, Se-Hoon;Park, Young-Soo;Kim, Nam-Gyu;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2018
  • In this present study, in order to update the finite element model considering the boundary conditions, a method has been proposed. The conventional finite element model updating method, updates the finite element model by using the dynamic characteristics (natural frequency, mode shape) which can be estimated from the ambient vibration test. Therefore, prediction of the static response of an actual structure is difficult. Furthermore, accurate estimation of the physical properties is relatively hard. A novel method has been proposed to overcome the limitations of conventional method. Initially, the proposed method estimates the rotational spring constant of a finite element model using the deflection of structure and the rotational displacement of support measurements. The final updated finite element model is constructed by estimating the material properties of the structure using the finite element model with updated rotational spring constant and the dynamic characteristics of the structure. The proposed finite element model updating method is validated through numerical simulation and compared with the conventional finite element model updating method.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.

Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model

  • Cho, Soojin;Yun, Chung-Bang;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.645-663
    • /
    • 2015
  • Recently, an indirect displacement estimation method using data fusion of acceleration and strain (i.e., acceleration-strain-based method) has been developed. Though the method showed good performance on beam-like structures, it has inherent limitation in applying to more general types of bridges that may have complex shapes, because it uses assumed analytical (sinusoidal) mode shapes to map the measured strain into displacement. This paper proposes an improved displacement estimation method that can be applied to more general types of bridges by building the mapping using the finite element model of the structure rather than using the assumed sinusoidal mode shapes. The performance of the proposed method is evaluated by numerical simulations on a deck arch bridge model and a three-span truss bridge model whose mode shapes are difficult to express as analytical functions. The displacements are estimated by acceleration-based method, strain-based method, acceleration-strain-based method, and the improved method. Then the results are compared with the exact displacement. An experimental validation is also carried out on a prestressed concrete girder bridge. The proposed method is found to provide the best estimate for dynamic displacements in the comparison, showing good agreement with the measurements as well.