• Title/Summary/Keyword: model matching problems

Search Result 102, Processing Time 0.023 seconds

FUZZY LOGIC KNOWLEDGE SYSTEMS AND ARTIFICIAL NEURAL NETWORKS IN MEDICINE AND BIOLOGY

  • Sanchez, Elie
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.9-25
    • /
    • 1991
  • This tutorial paper has been written for biologists, physicians or beginners in fuzzy sets theory and applications. This field is introduced in the framework of medical diagnosis problems. The paper describes and illustrates with practical examples, a general methodology of special interest in the processing of borderline cases, that allows a graded assignment of diagnoses to patients. A pattern of medical knowledge consists of a tableau with linguistic entries or of fuzzy propositions. Relationships between symptoms and diagnoses are interpreted as labels of fuzzy sets. It is shown how possibility measures (soft matching) can be used and combined to derive diagnoses after measurements on collected data. The concepts and methods are illustrated in a biomedical application on inflammatory protein variations. In the case of poor diagnostic classifications, it is introduced appropriate ponderations, acting on the characterizations of proteins, in order to decrease their relative influence. As a consequence, when pattern matching is achieved, the final ranking of inflammatory syndromes assigned to a given patient might change to better fit the actual classification. Defuzzification of results (i.e. diagnostic groups assigned to patients) is performed as a non fuzzy sets partition issued from a "separating power", and not as the center of gravity method commonly employed in fuzzy control. It is then introduced a model of fuzzy connectionist expert system, in which an artificial neural network is designed to build the knowledge base of an expert system, from training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the connections: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through MIN-MAX fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feed forward network is described and illustrated in the same biomedical domain as in the first part.

  • PDF

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Observation Likelihood Function Design and Slippage Error Compensation Scheme for Indoor Mobile Robots (실내용 이동로봇을 위한 위치추정 관측모델 설계 및 미끄러짐 오차 보상 기법 개발)

  • Moon, Chang-Bae;Kim, Kyoung-Rok;Song, Jae-Bok;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1092-1098
    • /
    • 2007
  • A mobile robot localization problem can be classified into following three sub-problems as an observation likelihood model, a motion model and a filtering technique. So far, we have developed the range sensor based, integrated localization scheme, which can be used in human-coexisting real environment such as a science museum and office buildings. From those experiences, we found out that there are several significant issues to be solved. In this paper, we focus on three key issues, and then illustrate our solutions to the presented problems. Three issues are listed as follows: (1) Investigation of design requirements of a desirable observation likelihood model, and performance analysis of our design (2) Performance evaluation of the localization result by computing the matching error (3) The semi-global localization scheme to deal with localization failure due to abrupt wheel slippage In this paper, we show the significance of each concept, developed solutions and the experimental results. Experiments were carried out in a typical modern building environment, and the results clearly show that the proposed solutions are useful to develop practical and integrated localization schemes.

Harmonics Assessment for an Electric Railroad Feeding System using Moments Matching Method (모멘트 정합 방법(Moment Matching Method)을 이용한 전기철도 급전시스템의 고조파 평가)

  • Lee, Jun-Kyong;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Generally, an electric railroad feeding system has many problems due to the different characteristics in contrast with a load of general three-phase AC electric power system. One of them is harmonics problem caused by the switching device existing in the feeding system, and moreover, the time-varying dynamic loads of rail way is inherently another cause to increase this harmonics problem. In Korea power systems, the electric railroad feeding system is directly supplied from the substation of KEPCO. Therefore, if voltages fluctuation or unbalanced voltages are created by the voltage and current distortion or voltage drop during operation, it affects directly the source of supply. The trainloads of electric railway system have non-periodic but iterative harmonic characteristics as operating condition, because the electric characteristic of the electric railroad feeding system is changed by physical conditions of the each trainload. According to the traditional study, the estimation of harmonics has been performed by deterministic way using the steady state data at the specific time. This method is easy to analyze harmonics, but it has limits in some cases which needs an assessment of dynamic load and reliability. Therefore, this paper proposes the probabilistic estimation method, moments matching method(MW) in order to overcome the drawback of deterministic method. In this paper, distributions for each harmonics are convolved to obtain the moments and cumulants of TDD(Total Demand Distortion), and this can be generalized for any number of trains. For the case study, the electric railway system of LAT(Intra Airport Transit) in Incheon International Airport is modeled using PSCAD/EMTDC dynamic simulator. The raw data of harmonics for the moments matching method is acquired from simulation of the LAT model.

A Software Architecture Design Method that Matches Problem Frames and Architectural Patterns (문제틀과 아키텍처 패턴의 매칭을 이용한 소프트웨어 아키텍처 설계 방법)

  • Kim, Jungmin;Kang, Sungwon;Lee, Jihyun
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.341-360
    • /
    • 2015
  • While architectural patterns provide software development solutions by providing schemas for structural organizations of software systems based on empirical knowledge, Jackson's problem frames provide a method of analyzing software problems. Problem frames are useful to understanding the software development problem, by putting emphasis on the problem domain, rather than on the solution space. Research exists that relates problem frames and software architecture, but most of this research uses problem frames only to understand given problems. Moreover, none of the existing research derives architectural patterns by considering both problem frames and quality attributes. In this paper, we propose a software architecture design method for pattern-based architecture design, by matching problem frames and architectural patterns. To that end, our approach first develops the problem model based on the problem frames approach, and then uses it to match with candidate architectural patterns, from the perspectives of both functionality, and quality attributes. Functional matching uses the problem frame diagram to match the problem model of an architectural pattern. We conduct a case study to show that our approach can systematically decide the right architectural patterns, and provide a basis for fine-grained software architecture design.

A Study on the Characteristics Improvement of Fluid Power Actuator Using Adaptive Control (적응제어를 이용한 유압 액츄에이터의 특성개선에 관한 연구)

  • 염만오;윤일로
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 2004
  • A hydraulic system is difficult to keep the performance due to non-linearity, load pressure which changes according to working condition and system parameter variation, the requirement of control algorithm has been risen in order to satisfy them. An adaptive control is a control method which is suggested to achieve a control object though plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp, adaptive control can keep the characteristics of closed-loop system regularly. In this study GMVAC(generalized minimum variance adaptive control) combined with output error feedback is proposed in order to solve problems of non-minimum phase, vibration and overshoot in initial response of the plant. The control performance according to the variation of characteristics of the plant is evaluated by changing the supply pressure only.

Robust Intelligent Digital Redesign (강인 지능형 디지털 재설계 방안 연구)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.220-222
    • /
    • 2006
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated lineal operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a T-S fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

  • PDF

Intelligent Digital Redesign of Uncertain Nonlinear Systems Using Power Series (Power Series를 이용한 불확실성을 포함된 비선형 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae;Kim, Do-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.496-498
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Proposal of Practical Reference-Model and It's Performance Improvement for PID Control (PID제어를 위한 실용적인 기준 모델 제안과 성능개선)

  • Hur, J.G.;Yang, K.U.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.66-72
    • /
    • 2007
  • This study proposed new method to decide the reference model necessary for design PID controller. In generally, control design problems using the reference model have the following two factors. One factor is that numerical model of the controlled system can be obtained extremely, and the other is that specification for the closed-loop dynamic performance is pure moderate. Therefore, the control design procedure is essentially based on the partial reference model matching which offers a reasonable method to simplify the design and the controller configuration under the controlled system uncertainty. ITAE(Integral of time-multiplied absolute error) performance index and Kitamori method etc. which were used a reference model method had a limit to settling time and rising time of reference model that it arrived to steady state response according to the controlled system. On this study, if it only knew peak time of overshoot and settling time by measurement signal of the controlled system, it can be made the reference model easily. We proposed new method to improve performance index of the reference model superior to existing reference model index and illustrate the numerical simulation results to show the effectiveness of proposed control method design.

  • PDF

Determination of an Economic Lot Size of Color Filters in TFT-LCD Manufacturing (TFT-LCD 공정에서의 Color Filter 의 경제적 Lot Size 의 결정)

  • Jeong, Bong-Ju;Sohn, So-Young
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.47-55
    • /
    • 1997
  • This paper deals with an assembly process of the TFT glasses and the color filters in LCD manufacturing. Two specific problems are presented and solved. One is a matching problem to find the best matches between a set of TFT glasses and a set of color filters, which result in the maximum number of good LCD assemblies. A simple mathematical model is constructed for this problem and an optimal solution can be obtained using an existing algorithm. The other is a main problem that requires a determination of an economic lot size of the color filters which are going to be assembled with a given set of TFT glasses. A Bayesian dynamic forecasting model is developed to predict the defective patterns of color filters. Based on the predicted defective rate of color filters, the minimum lot size of the color filters can be determined to minimize the probability of losing good TFT glasses and color filters.

  • PDF