• Title/Summary/Keyword: model based design

Search Result 12,329, Processing Time 0.042 seconds

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.

Reliability Analysis on Firewater Supply Facilities based on the Probability Theory with Considering Common Cause Failures (소방수 공급설비에 대한 공통원인고장을 고려한 확률론적 신뢰도 분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.76-85
    • /
    • 2003
  • In this study, we write down the definitions, their causes and the techniques of analysis as a theoretical consideration of common cause failures, and investigate the limitation and the importance of the common cause failures by applying to the analysis on the fire protection as a representative safety facility. As you can know in the reliability analysis, most impressive cause is the malfunctions of pumping operations; especially the common cause failure of two pumps is dominant. In other words, it is possible to assess system-reliability as twice as actual without CCF From these, CCF is extraordinarily important and the results are highly dependent on the CCF factor. And although it would increase with multiple installations, the reliability are not defined as linear with those multiplications. In addition, the differences in results due to the models for analysis are not significant, whereas the various sources of data produce highly different results. Therefore, we conclude that the reliabilities are dependent on the quality of the usable data much better than the variety of models. As a result, the basic and engineering device for the preventions of CCF of the multiple facilities is to design it as reliably as to design the fire-water pump. That is to say, we must assess those reliabilities using PFD whether they are appropriate to SIL (Safety Integrity Level) which is required for the reliability in SIS (Safety Instrumented System). The result of the analysis on the reliability of the fire-water supply with CCF shows that PFD is 3.80E-3, so that it cannot be said to be designed as safely as in the level of SIL5. However, without CCF, PFD is 1.82E-3 which means that they are designed as unsafely as before.

Optimization for Extraction of ${\beta}-Carotene$ from Carrot by Supercritical Carbon Dioxide (초임계 유체에 의한 당근의 ${\beta}-Carotene$ 추출의 최적화)

  • Kim, Young-Hoh;Chang, Kyu-Seob;Park, Young-Deuk
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.411-416
    • /
    • 1996
  • Supercritical fluid extraction of ${\beta}$-carotene from carrot was optimized to maximize ${\beta}$-carotene (Y) extraction yield. A central composite design involving extraction pressure ($X_1$ 200-,100 bar), temperature ($X_2,\;35-51^{\circ}C$) and time ($X_1$$ 60-200min) was used. Three independent factors ($X_1,\;X_2,\;X_3$) were chosen to determine their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation,$Y={\beta}_0+{\beta}_1X_1+{\beta}_2X_2+{\beta}_3X_3+{\beta}_11X_12+{\beta}_22X_3^2+{\beta}_-12X_1X_2+{\beta}_12X_1X_2+{\beta}_13X_1X_3+{\beta}_23X_2X_3,$ which measures the linear, quadratic and interaction effects. Extraction yields of ${\beta}$-carotene were affected by pressure, time and temperature in the decreasing order, and linear effect of tenter point (${\beta}_11$) and pressure (${\beta}_1$) were significant at a level of 0.001(${\alpha}$). Based on the analysis of variance, the model fitted for ${\beta}_11$-carotene (Y) was significant at 5% confidence level and the coefficient of determination was 0.938. According to the response surface of ${\beta}$-carotene by cannoical analysis, the stationary point for quantitatively dependent variable (Y) was found to be the maximum point for extraction yield. Response area for ${\beta}$-carotene (Y) in terms of interesting region was estimated over $10,611{\mu}g$ Per 100 g raw carrot under extraction.

  • PDF

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

A Study on Under Keel Clearance of Gadeok Channel for the Safety Passage of Mega Container Ship (초대형 컨테이너선의 가덕수로 안전운항을 위한 선저여유수심 연구)

  • Ryu, Won;Kong, Suk-Young;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.789-797
    • /
    • 2021
  • The worldwide sizes of container ships are rapidly increasing. The container ship size in 2005, which was about 9,200 TEU has increased to 24,000 TEU in recent times. In addition to the increase in the sizes of the container ships, the arrivals/departures of large container vessels to/from Korea have also increased. Hence, the necessity for reviewing safe passage of such vessels is emphasized. In the present study, a 24,000 TEU container vessel was used as a model ship to calculate the under-keel clearance (UKC) at Gadeok Channel through which vessels must pass to arrive at Busan New Port, in accordance with the Korean Port and Fishing Port Design Standards and Commentary. In addition, the maximum allowable speed that meets UKC standards was calculated using various squat formulas, whose results were then compared with the current speed limit standards. The analysis results show that Busan New Port requires 10% marginal water depth, and the squat that meets this requirement is 0.95 m. Gadeok Channel requires 15% marginal water depth, and the squat that meets this requirement is 1.78 m; in this case, the maximum allowable speed is calculated as 15 kts. Busan New Port has set the speed limit as 12 kts, which is higher than the calculated 11 kts. Thus, speed limit reconsideration is required in terms of safety. However, the set speed limit for Gadeok Channel is 12 kts, which is lower than the calculated 15 kts. Thus, additional considerations may be provided to increase the speed limits for smooth navigational passage of vessels. The present study, however, is constrained by the fact that it reflects only a limited number of elements in the UKC and allowable speed calculations; therefore, more accurate UKC and safe speed values can be suggested based on extended studies to this research.

A Development of Evaluation Indicators for Performance Improvement of Horticultural Therapy Garden (원예치료정원의 성능개선을 위한 평가지표 개발)

  • Ahn, Je-Jun;Park, Yool-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.113-123
    • /
    • 2018
  • The purpose of this research is to develop evaluation indicators forperformance improvement of horticultural therapy garden. In order to achieve a therapeutic purpose, the gardening activity held by the trained horticultural therapist. Moreover, horticultural therapy is 'a medical model' for the treatment and basic premise of the research was set, as horticultural therapy garden is characterized area to support activities of patients and horticultural therapist functionally and efficiently. For this study, three times of Delphi and AHP techniques were proceeded to export panels who were recruited by purposive sampling. Through these techniques, it was possible to deduct the evaluation indicator which maximizes the performance of the horticultural therapy garden. The evaluation items were prioritized by typing and stratification of the indicator. The results and discussions were stated as followings. Firstly, a questionnaire of experts was conducted to horticultural therapists and civil servants who were in charge of horticultural therapy. As results(horticultural therapists: 87.8%, civil servants: 75.2%), It is possible to conclude that both positions have the high recognition and agreed on the necessity of horticultural therapy. Secondly, Delphi investigation was conducted three times in order to develop the evaluation indicator for performance evaluation. After Delphi analysis, total 34 of evaluation elements to improve the performance of the horticultural therapy garden by reliability and validity analysis results. Thirdly, AHP analysis of each evaluation indicator was conducted on the relative importance and weighting. Moreover, the results showed 'interaction between nature and human' as the most important element, and in order of 'plan of the program', 'social interaction', 'sustainable environmental', and 'universal design rule', respectively. On the other hand, the exports from the university and research institute evaluated the importance of 'interaction between nature and human', while horticultural therapists chose 'plan of the program' as the most important element. Fourthly, the total weight was used to develop weight applied evaluation indicator for the performance evaluation of the horticultural therapy garden. The weight applying to evaluation index is generally calculated multiply the evaluation scores and the total weight using AHP analysis. Finally, 'the evaluation indicator and evaluation score sheet for performance improvement of the horticultural therapy garden' was finally stated based on the relative order of priority between evaluation indicators and analyzing the weight. If it was deducted the improvement points for the efficiency of already established horticultural therapy garden using the 'weight applied evaluation sheet', it is possible to expand it by judging the importance with the decision of the priority because the item importance decided by experts was reflected. Moreover, in the condition of new garden establishment, it is expected to be helpful in suggesting ways for performance improvement and in setting the guidelines by understanding the major indicators of performance improvement in horticultural therapy activity.

A comparative study of risk according to smoke control flow rate and methods in case of train fire at subway platform (지하철 승강장에서 열차 화재 시 제연풍량 및 방식에 따른 위험도 비교 연구)

  • Ryu, Ji-Oh;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.327-339
    • /
    • 2022
  • The purpose of this study is to present the effective smoke control flow rate and mode for securing safety through quantitative risk assessment according to the smoke control flow rate and mode (supply or exhaust) of the platform when a train fire occurs at the subway platform. To this end, a fire outbreak scenario was created using a side platform with a central staircase as a model and fire analysis was performed for each scenario to compare and analyze fire propagation characteristics and ASET, evacuation analysis was performed to predict the number of deaths. In addition, a fire accident rate (F)/number of deaths (N) diagram (F/N diagram) was prepared for each scenario to compare and evaluate the risk according to the smoke control flow rate and mode. In the ASET analysis of harmful factors, carbon monoxide, temperature, and visible distance determined by performance-oriented design methods and standards for firefighting facilities, the effect of visible distance is the largest, In the case where the delay in entering the platform of the fire train was not taken into account, the ASET was analyzed to be about 800 seconds when the air flow rate was 4 × 833 m3/min. The estimated number of deaths varies greatly depending on the location of the vehicle of fire train, In the case of a fire occurring in a vehicle adjacent to the stairs, it is shown that the increase is up to three times that of the vehicle in the lead. In addition, when the smoke control flow rate increases, the number of fatalities decreases, and the reduction rate of the air supply method rather than the exhaust method increases. When the supply flow rate is 4 × 833 m3/min, the expected number of deaths is reduced to 13% compared to the case where ventilation is not performed. As a result of the risk assessment, it is found that the current social risk assessment criteria are satisfied when smoke control is performed, and the number of deaths is the flow rate 4 × 833 m3/min when smoke control is performed at 29.9 people in 10,000 year, It was analyzed that it decreased to 4.36 people.

Effect of K2CO3 Loading on the Adsorption Performance of Inorganic Adsorbent for H2S Removal (K2CO3 첨가에 따른 H2S 제거용 무기계 흡착제의 흡착성능 영향에 관한 연구)

  • Jang, Kil Nam;Song, Young Sang;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.286-293
    • /
    • 2017
  • The goal of this paper was to improve the performance of the adsorbent to remove $H_2S$. Pellet type adsorbents were prepared by using four kinds of materials ($Fe_2O_3$, $Ca(OH)_2$, Activated carbon, $Al(OH)_2)$ for use as a basic carrier. As the results of $H_2S$ adsorption tests, $Fe_2O_3$ and Activated Carbon improved the adsorption performance of $H_2S$ by 1.5 ~ 2 times, and $Ca(OH)_2$ and $Al(OH)_2$ showed no effect on $H_2S$ adsorption performance. Four basic materials were as carriers, and 5 wt% of KI, KOH and $K_2CO_3$ were added on the carriers, respectively. As the results of $H_2S$ adsorption tests, adsorbent containing $K_2CO_3$ showed the best performance. As a result of $H_2S$ adsorption test with varying $K_2CO_3$ content from 5 to 30 wt%, it was confirmed that adsorption performance was increased up to 20 wt% of $K_2CO_3$ and adsorption performance decreased to 30 wt%. The $H_2S$ adsorption performance was modeled by using Thomas model with varying $K_2CO_3$ contents and the results were used for the adsorption tower design. It was shown that the experimental values and the simulated values were in good agreement with the contents range of $K_2CO_3$ up to 20 wt%. Based on these results, it is expected that not only the adsorption performance of $H_2S$ adsorbent is improved but also life time of the adsorbent is increased.

The Analysis on the Determinants of Shipping Lines's entering the Arctic Sea Route (외항선사의 북극해항로 진출에 관한 결정요인 분석)

  • Son, Kyong-Ryong
    • Journal of Korea Port Economic Association
    • /
    • v.35 no.4
    • /
    • pp.1-16
    • /
    • 2019
  • The purpose of this study is to Analyze the problems that container shipping companies exist through the commercialization of container shipping for Non-Arctic countries and the opportunity factors for the transport of the Arctic shipping to improve cooperation cross-border relation Arctic policy and the use of transport. In order to design a hierarchy analysis method study model, four high and 17 low factors were extracted by designing a hierarchy analysis method study model based on results by prior study and in-depth interview. The first of the higher factors is the internal strength of assessing the value of the Arctic, the will and capabilities of the shipping companies in creating new markets with the vision and goals of the shipping companies. Second, the internal constraints associated with the shipping companies advance to the NSR mean the negative factors for the entry into the NSR and the internal weaknesses that cause the shipping companies capacity limitations. Third, the economic benefits from the use of NSR are external factor for shipping companies in cooperation with the future economic value of the Arctic and with respect to Arctic sea and Arctic advance and development from Arctic coastal countries. Finally, external pre-emptive tasks means to respond to use NSR by external restrictions on transport to prepare the possibility of severe weather conditions, the customs policy change of coastal countries.

Development of Industrial Embedded System Platform (산업용 임베디드 시스템 플랫폼 개발)

  • Kim, Dae-Nam;Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.50-60
    • /
    • 2010
  • For the last half a century, the personal computer and software industries have been prosperous due to the incessant evolution of computer systems. In the 21st century, the embedded system market has greatly increased as the market shifted to the mobile gadget field. While a lot of multimedia gadgets such as mobile phone, navigation system, PMP, etc. are pouring into the market, most industrial control systems still rely on 8-bit micro-controllers and simple application software techniques. Unfortunately, the technological barrier which requires additional investment and higher quality manpower to overcome, and the business risks which come from the uncertainty of the market growth and the competitiveness of the resulting products have prevented the companies in the industry from taking advantage of such fancy technologies. However, high performance, low-power and low-cost hardware and software platforms will enable their high-technology products to be developed and recognized by potential clients in the future. This paper presents such a platform for industrial embedded systems. The platform was designed based on Telechips TCC8300 multimedia processor which embedded a variety of parallel hardware for the implementation of multimedia functions. And open-source Embedded Linux, TinyX and GTK+ are used for implementation of GUI to minimize technology costs. In order to estimate the expected performance and power consumption, the performance improvement and the power consumption due to each of enabled hardware sub-systems including YUV2RGB frame converter are measured. An analytic model was devised to check the feasibility of a new application and trade off its performance and power consumption. The validity of the model has been confirmed by implementing a real target system. The cost can be further mitigated by using the hardware parts which are being used for mass production products mostly in the cell-phone market.