• 제목/요약/키워드: mode superposition

검색결과 161건 처리시간 0.032초

비비례 감쇠시스템의 해석을 위한 효율적인 모드 중첩법 (Efficient Mode Superposition Method for Non-Classically Damped Systems)

  • 조상원;조지성;박선규;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.549-555
    • /
    • 2000
  • The improved mode superposition methods for non-classically damped systems are presented in this paper. Generally, the mode superposition method uses a relatively small subset of the normal modes of structures. The mode acceleration method and the modal truncation augmentation method improve the results of the mode superposition method by considering effects of truncated high modes. For using these methods to analyze non-classically damped systems, the systems are approximated to the classically damped systems and thereby the errors are induced. In this paper, the mode acceleration method and the modal truncation augmentation method are expanded to analyze the non-classically damped systems. The applicability of the expanded methods is verified by closed form solutions and numerical examples. The expanded modal truncation augmentation method is conditionally stable depending on the pattern of the external loading in the non-classically damped systems whereas the expanded mode acceleration method is stable for the all cases of loading. In the stable case, the results are the same with those of the expanded mode acceleration method.

  • PDF

Generalized complex mode superposition approach for non-classically damped systems

  • Chen, Huating;Liu, Yanhui;Tan, Ping
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.271-286
    • /
    • 2020
  • Passive control technologies are commonly used in several areas to suppress structural vibrations by the addition of supplementary damping, and some modal damping may be heavy beyond critical damping even for regular structures with energy dissipation devices. The design of passive control structures is typically based on (complex) mode superposition approaches. However, the conventional mode superposition approach is predominantly applied to cases of under-critical damping. Moreover, when any modal damping ratio is equal or close to 1.0, the system becomes defective, i.e., a complete set of eigenvectors cannot be obtained such that some well-known algorithms for the quadratic eigenvalue problem are invalid. In this paper, a generalized complex mode superposition method that is suitable for under-critical, critical and over-critical damping is proposed and expressed in a unified form for structural displacement, velocity and acceleration responses. In the new method, the conventional algorithm for the eigenvalue problem is still valid, even though the system becomes defective due to critical modal damping. Based on the modal truncation error analysis, modal corrected methods for displacement and acceleration responses are developed to approximately consider the contribution of the truncated higher modes. Finally, the implementation of the proposed methods is presented through two numerical examples, and the effectiveness is investigated. The results also show that over-critically damped modes have a significant impact on structural responses. This study is a development of the original complex mode superposition method and can be applied well to dynamic analyses of non-classically damped systems.

심해 라이저의 와류유기 진동해석 (Vortex-Induced Vibration Analysis of Deep-Sea Riser)

  • 박성종;김봉재
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.364-370
    • /
    • 2017
  • A numerical model based on the mode superposition method is used to study the vortex-induced vibration response characteristics of a deep-sea riser such as steel catenary riser (SCR). A steel catenary riser can be modeled using a flexible cable with simple supports at both ends. The natural frequency, mode shape and mode curvature of the riser are calculated and the vortex-induced vibration response of the riser is obtained using the equilibrium of the input and output power. The mode superposition method is applied to the vibrational stresses for each mode to calculate the overall riser fatigue life.

모드중첩법을 이용한 전단보 모델의 비선형 해석 (Non-Liner Analysis of Shear Beam Model using Mode Superposition)

  • 김원종;홍성목
    • 한국지진공학회논문집
    • /
    • 제3권2호
    • /
    • pp.87-96
    • /
    • 1999
  • 시간영역에서의 구조물의 해석은 직접적분법과 모드중첩법에 의하여 구해질 수 있다 그 중에서도 모드중첩법에 의한 해석방법은 몇가지 저차 진동모드를 사용하여 비교적 정확한 해를 구할 수 있기 때문에 동적해석에 널리 사용되고 있다, 그러나 비선형해석에서는 각 부재들의 상태에 따라 강성이 달라지므로 고유 진동모드를 정의할수 없거나 변화되는 강성에 따라 고유진동 모드를 지속적으로 다시 구하여야 하는 불편 있으므로 모드 중첩법을 이용한 비선형해석은 완전탄소성모델 등 극히 제한된 조건에서만 실행이 가능하였다 본논문에서는 강성행렬을 각 부재별로 분리시키고 비선형복원력과 초기선형복언력과 초기선형복원력의 차이를 하중항에 반영시킴으로써 모드중첩법을 이용하여 비선형 해석은완전탄소성모델 등 극히 제한된 조건에서만 실행이 가능하였다 본 논문에서는 강성행렬을 각 부재별로 분리시키고 비선형 복원력과 초기선형복원력의 차이를 하중항에 반영시킴으로써 모드중첩법을 이용하여 비선형해석이 가능한 방법을 제시하고자 한다. 특히 각 부재 강성을 각 부재의 상대변위의 함수로 나타냄으로써 연속적인 계산이 가능하게 하였다 본 논문에서 제시된 방법은 전단보모델에 적용하였으며 모드 개수를 변화시켜 지진하중에 의한 최대변위를 계산하여 이를 직접적분버에 의한 결과와 비교하였다.

  • PDF

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

전단류 하중을 받는 상부장력 라이저의 동적 응답 해석 (Dynamic Response Analysis of Top-tensioned Riser Under Sheared Current Load)

  • 김국현
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.83-89
    • /
    • 2013
  • A numerical scheme based on a mode superposition method is presented for the dynamic response analysis of a top-tensioned riser (TTR) under sheared current loads. The natural frequencies and mode shapes of the TTR have been calculated analytically for a beam with a slowly varying tension and pinned-pinned boundary conditions at the top and bottom ends. The lift coefficients and corresponding amplitudes used to estimate the vortex-induced modal force and damping for each mode were predicted via iterative calculations based on the input and output power balancing concept. Here, the power-in regions were controlled by the normal distribution function, for which the center was coincident with the lock -in location by local vortex-shedding, and the range was defined by the constant standard deviation for the reduced velocity by the local current speed. Finally, dynamic responses such as root-mean-squared displacement and stress were calculated using the mode superposition technique. In order to verify the presented scheme, a numerical calculation was performed for a TTR under an arbitrary linearly sheared current and linearly varying tension. A comparison with the results of the existing software showed that the presented scheme could give reliable and feasible solutions. Case studies were performed to investigate the effects of various current loads and tensions.

모드중첩법을 기초로 한 집전성능해석 프로그램 개발 (Development of a Dynamic Simulation Program for Pantograph-Catenary System based on a Mode Superposition Method)

  • 조용현;이기원;현승호;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.606-617
    • /
    • 2000
  • A dynamic simulation program for pantograph-catenary system is developed based on a mode superposition method to predict current collection performance. Formulations for the dynamic simulation are presented in this paper. The number of modes which should be considered for a KTX catenary system is reviewed through frequency response analyses. The responses for GPU pantograph - KTX catenary system are simulated with various train speeds. The our simulation results are in reasonably good agreements with RTRI simulation program, SNCF simulation program, and BR simulation program.

  • PDF

풍하중을 받는 현수교의 진동 해석에 있어서 모우드 중첩법과 모우드 가속도법의 비교 (Comparison of Mode Superposition Method and Mode Acceleration Method in Dynamic Analysis of Suspension Bridges under Wind Loads)

  • 김태남
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.223-230
    • /
    • 1997
  • A method of stochastic dynamic analysis of suspension bridge subjected to random wind loads has been developed in this paper. Example analyses are carried out by mode superposition method(MSM), mode acceleration method(MAM) and advanced mode acceleration method(AMAM) in frequency domain for the Nam-Hae Bridge. In this study the statistical characterics of random wind loads we assumed to be Gaussian stationary zero mean processes. The considered structural response quanties are displacements, shear forces and bending moments. The mean extreme responses are approximately calculated by three times of standard deviations. The followings are the conclusions from this study. 1. Numerical results which obtained by three methods of computer program developed in this paper agree reasonably well when the numbers of modes increase. 2. AMAM is simple, accurate, economic and reliable method compared with the MSM and the MAM.

  • PDF

모드중첩법을 이용한 케이블지지교량의 3차원 교량-차량 상호작용 해석 (3D Bridge-Vehicle interaction Analysis of Cable-Supported Bridges Using Mode Superposition Method)

  • 이준석;임명훈;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.265-272
    • /
    • 2005
  • For bridge-vehicle interaction analysis of cable-supported brides, the superposition method is applied based on the results of 3-dimensional free vibration analysis using General-purpose FEM Software. This study firstly performs the eigenvalue analysis for the free vertical and the torsional vibration of bridges using FEM analysis. Next the equations of motion considering interaction between bridges and vehicles/train are derived from mode superposition method. And then dynamic analysis is performed using the Newmark numericial method. Finally through the numerical examples, the dynamic responses of cable-supported bridges by this study are presented and discussed.

  • PDF

모드중첩법 및 최소자승법을 통한 고충격 압저항 미소가속도계의 출력전압 해석 (Fast Simulation of Output Voltage for High-Shock Piezoresistive Microaccelerometer Using Mode Superposition Method and Least Square Method)

  • 한정삼;권기범
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.777-787
    • /
    • 2012
  • 본 논문에서는 여러 가지 충격하에서 압저항 고충격 미소가속도계의 과도 출력전압의 계산시 발생하는 방대한 계산 시간 문제를 모드중첩법 및 최소자승법을 이용하여 압저항 미소가속도계의 실시간 출력전압 계산이 가능하도록 효율적인 출력전압 과도해석 방법을 제안한다. 우선 정적 압저항-구조 해석을 통하여 미소가속도계의 변위와 출력전압을 계산하고 출력전압을 특정 위치의 변위에 관한 2차 다항식으로 근사화하여 그 회귀계수를 최소자승법을 통하여 결정한다. 이후에 모드중첩법을 통하여 여러 방향의 고충격하에서 미소가속도계의 과도 변위응답을 계산하고, 이 변위응답을 변위로 표현되는 출력전압 근사식에 대입하여 과도 출력전압을 예측한다. 100,000 G 고충격파, 사인파, 계단파 및 사각파 등의 여러 가지 고충격 입력에 대한 압저항 미소가속도계의 수치예제를 통하여 제안한 방법의 정확성 및 효율성을 검증하였다.