• Title/Summary/Keyword: mode stiffness matrix

Search Result 101, Processing Time 0.024 seconds

Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics (동특성 변화를 이용한 감쇠 구조물의 손상예측)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

The Geometrical Mode Analysis of an Elastically Suspended Rigid Body with Planes of Symmetry (대칭면을 갖는 강체 진동계의 진동모드에 대한 기하학적 해석)

  • Dan, Byeong-Ju;Choe, Yong-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.110-117
    • /
    • 2000
  • Vibration modes obtained from a modal analysis can be better explained from a screw theoretical standpoint. A vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as the twisting motion on a screw in a three dimensional space. This paper, presents the method to diagonalize a spatial stiffness matrix by use of a parallel axis congruence transformation. It also describes that the stiffness matrix diagonalized by a congruence transformation, can have the planes of symmetry depending on the location of the center of elasticity. For a plane of symmetry, any vibration mode can be expressed by the axis of vibration. Analytical solutions for the axis of vibration has been derived.

Dynamic stiffness matrix of an axially loaded slenderdouble-beam element

  • Jun, Li;Hongxing, Hua;Xiaobin, Li
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.717-733
    • /
    • 2010
  • The dynamic stiffness matrix is formulated for an axially loaded slender double-beam element in which both beams are homogeneous, prismatic and of the same length by directly solving the governing differential equations of motion of the double-beam element. The Bernoulli-Euler beam theory is used to define the dynamic behaviors of the beams and the effects of the mass of springs and axial force are taken into account in the formulation. The dynamic stiffness method is used for calculation of the exact natural frequencies and mode shapes of the double-beam systems. Numerical results are given for a particular example of axially loaded double-beam system under a variety of boundary conditions, and the exact numerical solutions are shown for the natural frequencies and normal mode shapes. The effects of the axial force and boundary conditions are extensively discussed.

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.473-497
    • /
    • 2009
  • For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.

Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors (유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석)

  • 최형진;백영인;이학은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

Using of Transfer Matrix for Shaft Element and Vibration Analysis (회전축요소의 전달행렬의 이용과 진동해석)

  • 전오성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.161-169
    • /
    • 2002
  • Based on the analytic expression for the elasto-dynamic behavior of rotating shaft, the transfer matrix is formulated for the shaft element with uniform cross-section. Timoshenko beam theory is Introduced for modeling the behavior of shaft. Complex variables representing the displacement, slope, moment and shear force are used for deriving the transfer matrix between both ends of the shaft element. Simulation result obtained by applying the transfer matrix to a general rotor model is compared with the reference result and proved to be exact. Natural frequencies and the corresponding modes are analyzed with varying the bearing: stiffness. The generally used bearings are considered for discussions. and the bearing stiffness is shown to affect the vibration characteristics of rotor.

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

A Study for Structural Damage Identification Method Using Genetic Algorithm (유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구)

  • Woo, Ho-Kil;Choi, Byoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

Selection of Nodes and Modes for Reduced Modeling of Substructures (부분구조물의 축약 모델링을 위한 절점 및 모드의 선정)

  • Hwang, Woo Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.232-237
    • /
    • 2015
  • Complex dynamic systems are composed of several subsystems. Each subsystems affect the dynamics of other subsystems since they are connected to each other in the whole system. Theoretically, we can derive the exact mass and stiffness matrix of a system if we have the natural frequencies and mode shapes of that system. In real situation, the modal parameters for the higher modes are not available and the number of degree of freedom concerned are not so high. This paper shows a simple method to derive the mass and stiffness matrix of a system considering the connecting points of subsystems. Since the accuracy of reconstructed structure depends on the selection of node and mode, the rule for selection of node and mode are derived from the numerical examples.